Abstract
Three-dimensional human-computer interaction has the potential to form the next generation of user interfaces and to replace the current 2D touch displays. To study and to develop such user interfaces, it is essential to be able to measure how a human behaves while interacting with them. In practice, this can be achieved by accurately measuring hand movements in 3D by using a camera-based system and computer vision. In this work, a framework for multi-camera finger movement measurements in 3D is proposed. This includes comprehensive evaluation of state-of-the-art object trackers to select the most appropriate one to track fast gestures such as pointing actions. Moreover, the needed trajectory post-processing and 3D trajectory reconstruction methods are proposed. The developed framework was successfully evaluated in the application where 3D touch screen usability is studied with 3D stimuli. The most sustainable performance was achieved by the Structuralist Cognitive model for visual Tracking tracker complemented with the LOESS smoothing.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Leap motion: https://www.leapmotion.com/product.
- 2.
Microsoft Kinect: http://www.xbox.com/en-US/kinect.
References
FFmpeg (2017). https://ffmpeg.org/. Accessed 01 May 2017
Bertinetto, L., Valmadre, J., Golodetz, S., Miksik, O., Torr, P.H.: Staple: complementary learners for real-time tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1401–1409 (2016)
van Beurden, M.H., Van Hoey, G., Hatzakis, H., Ijsselsteijn, W.A.: Stereoscopic displays in medical domains: a review of perception and performance effects. In: IS and T/SPIE Electronic Imaging, p. 72400A. International Society for Optics and Photonics (2009)
Chan, L.W., Kao, H.S., Chen, M.Y., Lee, M.S., Hsu, J., Hung, Y.P.: Touching the void: direct-touch interaction for intangible displays. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 2625–2634. ACM (2010)
Choi, J., Jin Chang, H., Jeong, J., Demiris, Y., Young Choi, J.: Visual tracking using attention-modulated disintegration and integration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4321–4330 (2016)
Cleveland, W.S., Devlin, S.J.: Locally weighted regression: an approach to regression analysis by local fitting. J. Am. Stat. Assoc. 83(403), 596–610 (1988)
Comaniciu, D., Ramesh, V., Meer, P.: Real-time tracking of non-rigid objects using mean shift. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 142–149. IEEE (2000)
Elliott, D., Hansen, S., Grierson, L.E.M., Lyons, J., Bennett, S.J., Hayes, S.J.: Goal-directed aiming: two components but multiple processes. Psychol. Bull. 136(6), 1023–1044 (2010)
Erdem, C.E., Sankur, B., Tekalp, A.M.: Performance measures for video object segmentation and tracking. IEEE Trans. Image Process. 13(7), 937–951 (2004)
Erol, A., Bebis, G., Nicolescu, M., Boyle, R.D., Twombly, X.: Vision-based hand pose estimation: a review. Comput. Vis. Image Underst. 108(12), 52–73 (2007). Special issue on vision for human-computer interaction
Hare, S., Golodetz, S., Saffari, A., Vineet, V., Cheng, M.M., Hicks, S.L., Torr, P.H.: Struck: structured output tracking with kernels. IEEE Trans. Pattern Anal. Mach. Intell. 38(10), 2096–2109 (2016)
Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2004)
Henriques, J.F., Caseiro, R., Martins, P., Batista, J.: Exploiting the circulant structure of tracking-by-detection with kernels. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7575, pp. 702–715. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33765-9_50
Henriques, J.F., Caseiro, R., Martins, P., Batista, J.: High-speed tracking with kernelized correlation filters. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 583–596 (2015)
Hiltunen, V., Eerola, T., Lensu, L., Kälviäinen, H.: Comparison of general object trackers for hand tracking in high-speed videos. In: International Conference on Pattern Recognition, pp. 2215–2220 (2014)
Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: automatic detection of tracking failures. In: International Conference on Pattern Recognition, pp. 2756–2759. IEEE (2010)
Kooi, F.L., Toet, A.: Visual comfort of binocular and 3D displays. Displays 25(2), 99–108 (2004)
Kristan, M., et al.: The visual object tracking VOT2016 challenge results. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9914, pp. 777–823. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48881-3_54
Kuronen, T.: Post-processing and analysis of tracked hand trajectories. Master’s thesis, Lappeenranta University of Technology (2014)
Kuronen, T., Eerola, T., Lensu, L., Takatalo, J., Häkkinen, J., Kälviäinen, H.: High-speed hand tracking for studying human-computer interaction. In: Paulsen, R.R., Pedersen, K.S. (eds.) SCIA 2015. LNCS, vol. 9127, pp. 130–141. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19665-7_11
Montero, A.S., Lang, J., Laganiere, R.: Scalable kernel correlation filter with sparse feature integration. In: Proceedings of the IEEE Conference on Computer Vision Workshops, pp. 587–594. IEEE (2015)
Nickels, K., Hutchinson, S.: Estimating uncertainty in SSD-based feature tracking. Image Vis. Comput. 20(1), 47–58 (2002)
Nikulin, M.S.: Hellinger distance. Encyclopedia of Mathematics, vol. 151. Springer (2001)
Possegger, H., Mauthner, T., Bischof, H.: In defense of color-based model-free tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2113–2120 (2015)
Ross, D.A., Lim, J., Lin, R.S., Yang, M.H.: Incremental learning for robust visual tracking. Int. J. Comput. Vis. 77(1), 125–141 (2008)
Servos, P., Goodale, M.A., Jakobson, L.S.: The role of binocular vision in prehension: a kinematic analysis. Vis. Res. 32(8), 1513–1521 (1992)
Shi, J., Tomasi, C.: Good features to track. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 593–600 (1994)
Valkov, D., Giesler, A., Hinrichs, K.: Evaluation of depth perception for touch interaction with stereoscopic rendered objects. In: Proceedings of the 2012 ACM International Conference on Interactive Tabletops and Surfaces, ITS 2012, pp. 21–30. ACM, New York, NY, USA (2012)
Van De Weijer, J., Schmid, C., Verbeek, J., Larlus, D.: Learning color names for real-world applications. IEEE Trans. Image Process. 18(7), 1512–1523 (2009)
Vojir, T.: Tracking with kernelized correlation filters (2017). https://github.com/vojirt/kcf/. Accessed 01 May 2017
Vojir, T., Noskova, J., Matas, J.: Robust scale-adaptive mean-shift for tracking. Pattern Recogn. Lett. 49, 250–258 (2014)
Wu, H., Sankaranarayanan, A.C., Chellappa, R.: In situ evaluation of tracking algorithms using time reversed chains. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2007)
Zhang, K., Zhang, L., Liu, Q., Zhang, D., Yang, M.-H.: Fast visual tracking via dense spatio-temporal context learning. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 127–141. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_9
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Lyubanenko, V., Kuronen, T., Eerola, T., Lensu, L., Kälviäinen, H., Häkkinen, J. (2017). Multi-camera Finger Tracking and 3D Trajectory Reconstruction for HCI Studies. In: Blanc-Talon, J., Penne, R., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2017. Lecture Notes in Computer Science(), vol 10617. Springer, Cham. https://doi.org/10.1007/978-3-319-70353-4_6
Download citation
DOI: https://doi.org/10.1007/978-3-319-70353-4_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-70352-7
Online ISBN: 978-3-319-70353-4
eBook Packages: Computer ScienceComputer Science (R0)