Nothing Special   »   [go: up one dir, main page]

Skip to main content

Multi-camera Finger Tracking and 3D Trajectory Reconstruction for HCI Studies

  • Conference paper
  • First Online:
Advanced Concepts for Intelligent Vision Systems (ACIVS 2017)

Abstract

Three-dimensional human-computer interaction has the potential to form the next generation of user interfaces and to replace the current 2D touch displays. To study and to develop such user interfaces, it is essential to be able to measure how a human behaves while interacting with them. In practice, this can be achieved by accurately measuring hand movements in 3D by using a camera-based system and computer vision. In this work, a framework for multi-camera finger movement measurements in 3D is proposed. This includes comprehensive evaluation of state-of-the-art object trackers to select the most appropriate one to track fast gestures such as pointing actions. Moreover, the needed trajectory post-processing and 3D trajectory reconstruction methods are proposed. The developed framework was successfully evaluated in the application where 3D touch screen usability is studied with 3D stimuli. The most sustainable performance was achieved by the Structuralist Cognitive model for visual Tracking tracker complemented with the LOESS smoothing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Leap motion: https://www.leapmotion.com/product.

  2. 2.

    Microsoft Kinect: http://www.xbox.com/en-US/kinect.

References

  1. FFmpeg (2017). https://ffmpeg.org/. Accessed 01 May 2017

  2. Bertinetto, L., Valmadre, J., Golodetz, S., Miksik, O., Torr, P.H.: Staple: complementary learners for real-time tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1401–1409 (2016)

    Google Scholar 

  3. van Beurden, M.H., Van Hoey, G., Hatzakis, H., Ijsselsteijn, W.A.: Stereoscopic displays in medical domains: a review of perception and performance effects. In: IS and T/SPIE Electronic Imaging, p. 72400A. International Society for Optics and Photonics (2009)

    Google Scholar 

  4. Chan, L.W., Kao, H.S., Chen, M.Y., Lee, M.S., Hsu, J., Hung, Y.P.: Touching the void: direct-touch interaction for intangible displays. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 2625–2634. ACM (2010)

    Google Scholar 

  5. Choi, J., Jin Chang, H., Jeong, J., Demiris, Y., Young Choi, J.: Visual tracking using attention-modulated disintegration and integration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4321–4330 (2016)

    Google Scholar 

  6. Cleveland, W.S., Devlin, S.J.: Locally weighted regression: an approach to regression analysis by local fitting. J. Am. Stat. Assoc. 83(403), 596–610 (1988)

    Article  MATH  Google Scholar 

  7. Comaniciu, D., Ramesh, V., Meer, P.: Real-time tracking of non-rigid objects using mean shift. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 142–149. IEEE (2000)

    Google Scholar 

  8. Elliott, D., Hansen, S., Grierson, L.E.M., Lyons, J., Bennett, S.J., Hayes, S.J.: Goal-directed aiming: two components but multiple processes. Psychol. Bull. 136(6), 1023–1044 (2010)

    Article  Google Scholar 

  9. Erdem, C.E., Sankur, B., Tekalp, A.M.: Performance measures for video object segmentation and tracking. IEEE Trans. Image Process. 13(7), 937–951 (2004)

    Article  Google Scholar 

  10. Erol, A., Bebis, G., Nicolescu, M., Boyle, R.D., Twombly, X.: Vision-based hand pose estimation: a review. Comput. Vis. Image Underst. 108(12), 52–73 (2007). Special issue on vision for human-computer interaction

    Article  Google Scholar 

  11. Hare, S., Golodetz, S., Saffari, A., Vineet, V., Cheng, M.M., Hicks, S.L., Torr, P.H.: Struck: structured output tracking with kernels. IEEE Trans. Pattern Anal. Mach. Intell. 38(10), 2096–2109 (2016)

    Article  Google Scholar 

  12. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  13. Henriques, J.F., Caseiro, R., Martins, P., Batista, J.: Exploiting the circulant structure of tracking-by-detection with kernels. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7575, pp. 702–715. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33765-9_50

    Chapter  Google Scholar 

  14. Henriques, J.F., Caseiro, R., Martins, P., Batista, J.: High-speed tracking with kernelized correlation filters. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 583–596 (2015)

    Article  Google Scholar 

  15. Hiltunen, V., Eerola, T., Lensu, L., Kälviäinen, H.: Comparison of general object trackers for hand tracking in high-speed videos. In: International Conference on Pattern Recognition, pp. 2215–2220 (2014)

    Google Scholar 

  16. Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: automatic detection of tracking failures. In: International Conference on Pattern Recognition, pp. 2756–2759. IEEE (2010)

    Google Scholar 

  17. Kooi, F.L., Toet, A.: Visual comfort of binocular and 3D displays. Displays 25(2), 99–108 (2004)

    Article  Google Scholar 

  18. Kristan, M., et al.: The visual object tracking VOT2016 challenge results. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9914, pp. 777–823. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48881-3_54

    Chapter  Google Scholar 

  19. Kuronen, T.: Post-processing and analysis of tracked hand trajectories. Master’s thesis, Lappeenranta University of Technology (2014)

    Google Scholar 

  20. Kuronen, T., Eerola, T., Lensu, L., Takatalo, J., Häkkinen, J., Kälviäinen, H.: High-speed hand tracking for studying human-computer interaction. In: Paulsen, R.R., Pedersen, K.S. (eds.) SCIA 2015. LNCS, vol. 9127, pp. 130–141. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19665-7_11

    Chapter  Google Scholar 

  21. Montero, A.S., Lang, J., Laganiere, R.: Scalable kernel correlation filter with sparse feature integration. In: Proceedings of the IEEE Conference on Computer Vision Workshops, pp. 587–594. IEEE (2015)

    Google Scholar 

  22. Nickels, K., Hutchinson, S.: Estimating uncertainty in SSD-based feature tracking. Image Vis. Comput. 20(1), 47–58 (2002)

    Article  Google Scholar 

  23. Nikulin, M.S.: Hellinger distance. Encyclopedia of Mathematics, vol. 151. Springer (2001)

    Google Scholar 

  24. Possegger, H., Mauthner, T., Bischof, H.: In defense of color-based model-free tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2113–2120 (2015)

    Google Scholar 

  25. Ross, D.A., Lim, J., Lin, R.S., Yang, M.H.: Incremental learning for robust visual tracking. Int. J. Comput. Vis. 77(1), 125–141 (2008)

    Article  Google Scholar 

  26. Servos, P., Goodale, M.A., Jakobson, L.S.: The role of binocular vision in prehension: a kinematic analysis. Vis. Res. 32(8), 1513–1521 (1992)

    Article  Google Scholar 

  27. Shi, J., Tomasi, C.: Good features to track. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 593–600 (1994)

    Google Scholar 

  28. Valkov, D., Giesler, A., Hinrichs, K.: Evaluation of depth perception for touch interaction with stereoscopic rendered objects. In: Proceedings of the 2012 ACM International Conference on Interactive Tabletops and Surfaces, ITS 2012, pp. 21–30. ACM, New York, NY, USA (2012)

    Google Scholar 

  29. Van De Weijer, J., Schmid, C., Verbeek, J., Larlus, D.: Learning color names for real-world applications. IEEE Trans. Image Process. 18(7), 1512–1523 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Vojir, T.: Tracking with kernelized correlation filters (2017). https://github.com/vojirt/kcf/. Accessed 01 May 2017

  31. Vojir, T., Noskova, J., Matas, J.: Robust scale-adaptive mean-shift for tracking. Pattern Recogn. Lett. 49, 250–258 (2014)

    Article  Google Scholar 

  32. Wu, H., Sankaranarayanan, A.C., Chellappa, R.: In situ evaluation of tracking algorithms using time reversed chains. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2007)

    Google Scholar 

  33. Zhang, K., Zhang, L., Liu, Q., Zhang, D., Yang, M.-H.: Fast visual tracking via dense spatio-temporal context learning. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 127–141. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_9

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toni Kuronen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lyubanenko, V., Kuronen, T., Eerola, T., Lensu, L., Kälviäinen, H., Häkkinen, J. (2017). Multi-camera Finger Tracking and 3D Trajectory Reconstruction for HCI Studies. In: Blanc-Talon, J., Penne, R., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2017. Lecture Notes in Computer Science(), vol 10617. Springer, Cham. https://doi.org/10.1007/978-3-319-70353-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70353-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70352-7

  • Online ISBN: 978-3-319-70353-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics