Nothing Special   »   [go: up one dir, main page]

Skip to main content

Omnidirectional Localization in vSLAM with Uncertainty Propagation and Bayesian Regression

  • Conference paper
  • First Online:
Advanced Concepts for Intelligent Vision Systems (ACIVS 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10617))

  • 2932 Accesses

Abstract

This article presents a visual localization technique based solely on the use of omnidirectional images, within the framework of mobile robotics. The proposal makes use of the epipolar constraint, adapted to the omnidirectional reference, in order to deal with matching point detection, which ultimately determines a motion transformation for localizing the robot. The principal contributions lay on the propagation of the current uncertainty to the matching. Besides, a Bayesian regression technique is also implemented, in order te reinforce the robustness. As a result, we provide a reliable adaptive matching, which proves its stability and consistency against non-linear and dynamic effects affecting the image frame, and consequently the final application. In particular, the search for matching points is highly reduced, thus aiding in the search and avoiding false correspondes. The final outcome is reflected by real data experiments, which confirm the benefit of these contributions, and also test the suitability of the localization when it is embedded on a vSLAM application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bay, H., Tuytelaars, T., Van Gool, L.: Speeded up robust features. Comput. Vis. Image Underst. 110, 346–359 (2008)

    Article  Google Scholar 

  2. Brand, C., Schuster, M.J., Hirschmller, H., Suppa, M.: Submap matching for stereo-vision based indoor/outdoor slam. In: IEEE IROS, pp. 5670–5677 (2015)

    Google Scholar 

  3. Brown, M.Z., Burschka, D., Hager, G.D.: Advances in computational stereo. IEEE Trans. PAMI 25(8), 993–1008 (2003)

    Article  Google Scholar 

  4. Caruso, D., Engel, J., Cremers, D.: Large-scale direct slam for omni directional cameras. In: IEEE IROS, pp. 141–148 (2015)

    Google Scholar 

  5. Davison, A.J.: Real-time simultaneous localisation and mapping with a single camera. In: ICCV, vol. 2, pp. 1403–1410, France (2003)

    Google Scholar 

  6. Engel, J., Stuckler, J., Cremers, D.: Large-scale direct slam with stereo cameras. In: IEEE IROS, pp. 1935–1942 (2015)

    Google Scholar 

  7. Ghaffari Jadidi, M., Valls Miro, J., Valencia, R., Andrade-Cetto, J.: Exploration on continuous Gaussian process frontier maps. In: IEEE ICRA, pp. 6077–6082, China (2014)

    Google Scholar 

  8. Gil, A., Reinoso, O., Ballesta, M., Juliá, M., Payá, L.: Estimation of visual maps with a robot network equipped with vision sensors. Sensors 10, 5209–5232 (2010)

    Article  Google Scholar 

  9. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  10. Huang, S., Dissanayake, G.: Convergence and consistency analysis for extended Kalman filter based slam. IEEE Trans. Rob. 23(5), 1036–1049 (2007)

    Article  Google Scholar 

  11. Joly, C., Rives, P.: Bearing-only SAM using a minimal inverse depth parametrization. In: ICINCO, vol. 2, pp. 281–288 (2010)

    Google Scholar 

  12. Kulback, S., Leiber, R.A.: On information and sufficiency. Ann. Math. Stat. 22, 79–86 (1951)

    Article  MathSciNet  Google Scholar 

  13. Lee, S.J., Song, J.B.: A new sonar salient feature structure for EKF-based slam. In: IEEE IROS, pp. 5966–5971 (2010)

    Google Scholar 

  14. Leung, C., Huang, S., Dissanayake, G.: Active slam in structured environments. In: IEEE ICRA, pp. 1898–1903 (2008)

    Google Scholar 

  15. Longuet-Higgins, H.C.: A computer algorithm for reconstructing a scene from two projections. Nature 293(5828), 133–135 (1985)

    Article  Google Scholar 

  16. Paya, L., Amoros, F., Fernandez, L., Reinoso, O.: Performance of global-appearance descriptors in map building and localization using omnidirectional vision. Sensors 14, 3033–3064 (2014)

    Article  Google Scholar 

  17. Rasmussen, C.E., Williams, C.K.I.: Gaussian processes for machine learning. In: Adaptive Computation and Machine Learning series. Massachusetts Institute of Technology (2006)

    Google Scholar 

  18. Scaramuzza, D., Martinelli, A., Siegwart, R.: A toolbox for easily calibrating omni directional cameras. In: IEEE IROS, pp. 5695–5701, China (2006)

    Google Scholar 

  19. Servos, J., Smart, M., Waslander, S.: Underwater stereo slam with refraction correction. In: IEEE IROS, pp. 3350–3355 (2013)

    Google Scholar 

  20. Shuang, Y., Baoyuan, C., Lei, Z., Xiaoyang, Y., Haibin, W., Jixun, Z., Deyun, C.: Encoded light image active feature matching approach in binocular stereo vision. In: IFOST, pp. 406–409 (2016)

    Google Scholar 

  21. Valiente, D., Gil, A., Fernandez, L., Reinoso, O.: A modified stochastic gradient descent algorithm for view-based slam using omnidirectional images. Inf. Sci. 279, 326–337 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Valiente .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Valiente, D., Reinoso, Ó., Gil, A., Payá, L., Ballesta, M. (2017). Omnidirectional Localization in vSLAM with Uncertainty Propagation and Bayesian Regression. In: Blanc-Talon, J., Penne, R., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2017. Lecture Notes in Computer Science(), vol 10617. Springer, Cham. https://doi.org/10.1007/978-3-319-70353-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70353-4_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70352-7

  • Online ISBN: 978-3-319-70353-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics