Nothing Special   »   [go: up one dir, main page]

Skip to main content

Fix-Budget and Recurrent Data Mining for Online Haptic Perception

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10638))

Included in the following conference series:

Abstract

Haptic perception is to identify different targets from haptic input. Haptic data have two prominent features: sequentially real-time and temporally correlated, which calls for a fixed-budget and recurrent perception procedure. Based on an efficient-robust spatio-temporal feature representation, we handle the problem with a bounded online-sequential learning framework (MBS-ESN), and incorporates the strength of batch-regularization bootstrapping, bounded recursive reservoir, and momentum-based estimation. Experimental evaluations show that it outperforms the state-of-the-art methods by a large margin on test accuracy; and its training performance is superior to most compared models from aspects of computational complexity and storage efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Atiya, A.F., Parlos, A.G.: New results on recurrent network training: unifying the algorithms and accelerating convergence. IEEE Trans. Neural Netw. 11(3), 697–709 (2000)

    Article  Google Scholar 

  2. Bekiroglu, Y., Kragic, D., Kyrki, V.: Learning grasp stability based on tactile data and HMMs. In: Proceedings of 19th International Conference on RO-MAN, pp. 132–137. IEEE, Viareggio (2010)

    Google Scholar 

  3. Bekiroglu, Y., Laaksonen, J., Jorgensen, J.A., Kyrki, V., Kragic, D.: Assessing grasp stability based on learning and haptic data. IEEE Trans. Robot. 27(3), 616–629 (2011)

    Article  Google Scholar 

  4. Cao, L., Kotagiri, R., Sun, F., Li, H., Huang, W., Aye, Z.M.M.: Efficient spatio-temporal tactile object recognition with randomized tiling convolutional networks in a hierarchical fusion strategy. In: Proceedings of 30th AAAI, pp. 3337–3345. AAAI Press, Phoenix (2016)

    Google Scholar 

  5. Chong, E.K., Zak, S.H.: An Introduction to Optimization, vol. 76. Wiley, Hoboken (2013)

    MATH  Google Scholar 

  6. Csató, L., Opper, M.: Sparse on-line Gaussian processes. Neural Comput. 14(3), 641–668 (2002)

    Article  MATH  Google Scholar 

  7. Drimus, A., Kootstra, G., Bilberg, A., Kragic, D.: Design of a flexible tactile sensor for classification of rigid and deformable objects. Robot. Auton. Syst. 62(1), 3–15 (2014)

    Article  Google Scholar 

  8. Farhang-Boroujeny, B.: Adaptive Filters: Theory and Applications. Wiley, Hoboken (2013)

    Book  MATH  Google Scholar 

  9. Hinton, G.E.: A practical guide to training restricted Boltzmann machines. In: Montavon, G., Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade. LNCS, vol. 7700, 2nd edn, pp. 599–619. Springer, Heidelberg (2012). doi:10.1007/978-3-642-35289-8_32

    Chapter  Google Scholar 

  10. Hoerl, A.E., Kennard, R.W.: Ridge regression: biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970)

    Article  MATH  Google Scholar 

  11. Horn, B.K., Schunck, B.G.: Determining optical flow. Artif. Intell. 17, 185–203 (1981)

    Article  Google Scholar 

  12. Jaeger, H.: Adaptive nonlinear system identification with echo state networks. In: Advances in Neural Information Processing Systems, pp. 593–600 (2002)

    Google Scholar 

  13. Jaeger, H., Haas, H.: Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication. Science 304(5667), 78–80 (2004)

    Article  Google Scholar 

  14. Kountouriotis, P., Obradovic, D., Goh, S.L., Mandic, D.P.: Multi-step forecasting using echo state networks. In: International Conference on Computer as a Tool, EUROCON 2005, vol. 2, pp. 1574–1577. IEEE (2005)

    Google Scholar 

  15. Liang, N.Y., Huang, G.B., Saratchandran, P., Sundararajan, N.: A fast and accurate online sequential learning algorithm for feedforward networks. IEEE Trans. Neural Netw. 17(6), 1411–1423 (2006)

    Article  Google Scholar 

  16. LukošEvičIus, M., Jaeger, H.: Reservoir computing approaches to recurrent neural network training. Comput. Sci. Rev. 3(3), 127–149 (2009)

    Article  MATH  Google Scholar 

  17. Maass, W., Natschläger, T., Markram, H.: Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Comput. 14(11), 2531–2560 (2002)

    Article  MATH  Google Scholar 

  18. Neal, R.M.: Bayesian Learning for Neural Networks, vol. 118. Springer Science & Business Media, New York (2012). doi:10.1007/978-1-4612-0745-0

    MATH  Google Scholar 

  19. Orabona, F., Castellini, C., Caputo, B., Jie, L., Sandini, G.: On-line independent support vector machines. Pattern Recogn. 43(4), 1402–1412 (2010)

    Article  MATH  Google Scholar 

  20. Orabona, F., Keshet, J., Caputo, B.: Bounded kernel-based online learning. J. Mach. Learn. Res. 10, 2643–2666 (2009)

    MathSciNet  MATH  Google Scholar 

  21. Rao, C.R., Mitra, S.K.: Generalized Inverse of Matrices and Its Applications, vol. 7. Wiley, New York (1971)

    MATH  Google Scholar 

  22. Shi, Z., Han, M.: Support vector echo-state machine for chaotic time-series prediction. IEEE Trans. Neural Netw. 18(2), 359–372 (2007)

    Article  Google Scholar 

  23. Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action recognition in videos. In: Advances in Neural Information Processing Systems, pp. 568–576 (2014)

    Google Scholar 

  24. Soh, H., Demiris, Y.: Incrementally learning objects by touch: online discriminative and generative models for tactile-based recognition. IEEE Trans. Haptics 7(4), 512 (2014)

    Article  Google Scholar 

  25. Soh, H., Su, Y., Demiris, Y.: Online spatio-temporal Gaussian process experts with application to tactile classification. In: Proceedings of 25th IROS, pp. 4489–4496. IEEE/RSJ, Algarve (2012)

    Google Scholar 

  26. Soh, H., Demiris, Y.: Iterative temporal learning and prediction with the sparse online echo state Gaussian process. In: Proceedings of 25th IJCNN, pp. 1–8. IEEE, Brisbane (2012)

    Google Scholar 

  27. Soh, H., Demiris, Y.: Spatio-temporal learning with the online finite and infinite echo-state Gaussian processes. IEEE Trans. Neural Netw. Learn. Syst. 26(3), 522–536 (2015)

    Article  MathSciNet  Google Scholar 

  28. Van Vaerenbergh, S., Santamaría, I., Liu, W., Príncipe, J.C.: Fixed-budget kernel recursive least-squares. In: 2010 IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), pp. 1882–1885. IEEE (2010)

    Google Scholar 

  29. Wang, Z., Crammer, K., Vucetic, S.: Breaking the curse of kernelization: budgeted stochastic gradient descent for large-scale SVM training. J. Mach. Learn. Res. 13(1), 3103–3131 (2012)

    MathSciNet  MATH  Google Scholar 

  30. Yang, J., Liu, H., Sun, F., Gao, M.: Tactile sequence classification using joint kernel sparse coding. In: Proceedings of 28th IJCNN, pp. 1–6. IEEE, Killarney (2015)

    Google Scholar 

Download references

Acknowledgments

This work is supported by National Natural Science Foundation of China with grant number 041320190.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lele Cao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cao, L., Sun, F., Liu, X., Huang, W., Cheng, W., Kotagiri, R. (2017). Fix-Budget and Recurrent Data Mining for Online Haptic Perception. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, ES. (eds) Neural Information Processing. ICONIP 2017. Lecture Notes in Computer Science(), vol 10638. Springer, Cham. https://doi.org/10.1007/978-3-319-70139-4_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70139-4_59

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70138-7

  • Online ISBN: 978-3-319-70139-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics