Abstract
Haptic perception is to identify different targets from haptic input. Haptic data have two prominent features: sequentially real-time and temporally correlated, which calls for a fixed-budget and recurrent perception procedure. Based on an efficient-robust spatio-temporal feature representation, we handle the problem with a bounded online-sequential learning framework (MBS-ESN), and incorporates the strength of batch-regularization bootstrapping, bounded recursive reservoir, and momentum-based estimation. Experimental evaluations show that it outperforms the state-of-the-art methods by a large margin on test accuracy; and its training performance is superior to most compared models from aspects of computational complexity and storage efficiency.
Similar content being viewed by others
References
Atiya, A.F., Parlos, A.G.: New results on recurrent network training: unifying the algorithms and accelerating convergence. IEEE Trans. Neural Netw. 11(3), 697–709 (2000)
Bekiroglu, Y., Kragic, D., Kyrki, V.: Learning grasp stability based on tactile data and HMMs. In: Proceedings of 19th International Conference on RO-MAN, pp. 132–137. IEEE, Viareggio (2010)
Bekiroglu, Y., Laaksonen, J., Jorgensen, J.A., Kyrki, V., Kragic, D.: Assessing grasp stability based on learning and haptic data. IEEE Trans. Robot. 27(3), 616–629 (2011)
Cao, L., Kotagiri, R., Sun, F., Li, H., Huang, W., Aye, Z.M.M.: Efficient spatio-temporal tactile object recognition with randomized tiling convolutional networks in a hierarchical fusion strategy. In: Proceedings of 30th AAAI, pp. 3337–3345. AAAI Press, Phoenix (2016)
Chong, E.K., Zak, S.H.: An Introduction to Optimization, vol. 76. Wiley, Hoboken (2013)
Csató, L., Opper, M.: Sparse on-line Gaussian processes. Neural Comput. 14(3), 641–668 (2002)
Drimus, A., Kootstra, G., Bilberg, A., Kragic, D.: Design of a flexible tactile sensor for classification of rigid and deformable objects. Robot. Auton. Syst. 62(1), 3–15 (2014)
Farhang-Boroujeny, B.: Adaptive Filters: Theory and Applications. Wiley, Hoboken (2013)
Hinton, G.E.: A practical guide to training restricted Boltzmann machines. In: Montavon, G., Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade. LNCS, vol. 7700, 2nd edn, pp. 599–619. Springer, Heidelberg (2012). doi:10.1007/978-3-642-35289-8_32
Hoerl, A.E., Kennard, R.W.: Ridge regression: biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970)
Horn, B.K., Schunck, B.G.: Determining optical flow. Artif. Intell. 17, 185–203 (1981)
Jaeger, H.: Adaptive nonlinear system identification with echo state networks. In: Advances in Neural Information Processing Systems, pp. 593–600 (2002)
Jaeger, H., Haas, H.: Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication. Science 304(5667), 78–80 (2004)
Kountouriotis, P., Obradovic, D., Goh, S.L., Mandic, D.P.: Multi-step forecasting using echo state networks. In: International Conference on Computer as a Tool, EUROCON 2005, vol. 2, pp. 1574–1577. IEEE (2005)
Liang, N.Y., Huang, G.B., Saratchandran, P., Sundararajan, N.: A fast and accurate online sequential learning algorithm for feedforward networks. IEEE Trans. Neural Netw. 17(6), 1411–1423 (2006)
LukošEvičIus, M., Jaeger, H.: Reservoir computing approaches to recurrent neural network training. Comput. Sci. Rev. 3(3), 127–149 (2009)
Maass, W., Natschläger, T., Markram, H.: Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Comput. 14(11), 2531–2560 (2002)
Neal, R.M.: Bayesian Learning for Neural Networks, vol. 118. Springer Science & Business Media, New York (2012). doi:10.1007/978-1-4612-0745-0
Orabona, F., Castellini, C., Caputo, B., Jie, L., Sandini, G.: On-line independent support vector machines. Pattern Recogn. 43(4), 1402–1412 (2010)
Orabona, F., Keshet, J., Caputo, B.: Bounded kernel-based online learning. J. Mach. Learn. Res. 10, 2643–2666 (2009)
Rao, C.R., Mitra, S.K.: Generalized Inverse of Matrices and Its Applications, vol. 7. Wiley, New York (1971)
Shi, Z., Han, M.: Support vector echo-state machine for chaotic time-series prediction. IEEE Trans. Neural Netw. 18(2), 359–372 (2007)
Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action recognition in videos. In: Advances in Neural Information Processing Systems, pp. 568–576 (2014)
Soh, H., Demiris, Y.: Incrementally learning objects by touch: online discriminative and generative models for tactile-based recognition. IEEE Trans. Haptics 7(4), 512 (2014)
Soh, H., Su, Y., Demiris, Y.: Online spatio-temporal Gaussian process experts with application to tactile classification. In: Proceedings of 25th IROS, pp. 4489–4496. IEEE/RSJ, Algarve (2012)
Soh, H., Demiris, Y.: Iterative temporal learning and prediction with the sparse online echo state Gaussian process. In: Proceedings of 25th IJCNN, pp. 1–8. IEEE, Brisbane (2012)
Soh, H., Demiris, Y.: Spatio-temporal learning with the online finite and infinite echo-state Gaussian processes. IEEE Trans. Neural Netw. Learn. Syst. 26(3), 522–536 (2015)
Van Vaerenbergh, S., Santamaría, I., Liu, W., Príncipe, J.C.: Fixed-budget kernel recursive least-squares. In: 2010 IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), pp. 1882–1885. IEEE (2010)
Wang, Z., Crammer, K., Vucetic, S.: Breaking the curse of kernelization: budgeted stochastic gradient descent for large-scale SVM training. J. Mach. Learn. Res. 13(1), 3103–3131 (2012)
Yang, J., Liu, H., Sun, F., Gao, M.: Tactile sequence classification using joint kernel sparse coding. In: Proceedings of 28th IJCNN, pp. 1–6. IEEE, Killarney (2015)
Acknowledgments
This work is supported by National Natural Science Foundation of China with grant number 041320190.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Cao, L., Sun, F., Liu, X., Huang, W., Cheng, W., Kotagiri, R. (2017). Fix-Budget and Recurrent Data Mining for Online Haptic Perception. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, ES. (eds) Neural Information Processing. ICONIP 2017. Lecture Notes in Computer Science(), vol 10638. Springer, Cham. https://doi.org/10.1007/978-3-319-70139-4_59
Download citation
DOI: https://doi.org/10.1007/978-3-319-70139-4_59
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-70138-7
Online ISBN: 978-3-319-70139-4
eBook Packages: Computer ScienceComputer Science (R0)