Nothing Special   »   [go: up one dir, main page]

Skip to main content

An Altered Kernel Transformation for Time Series Classification

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10638))

Included in the following conference series:

Abstract

Motivated by the great efficiency of dynamic time warping (DTW) for time series similarity measure, a Gaussian DTW (GDTW) kernel has been developed for time series classification. This paper proposes an altered Gaussian DTW (AGDTW) kernel function, which takes into consideration each of warping path between time series. Time series can be mapped into a special kernel space where the homogeneous data gather together and the heterogeneous data separate from each other. Classification results on transformed time series combined with different classifiers demonstrate that the AGDTW kernel is more powerful to represent and classify time series than the Gaussian radius basis function (RBF) and GDTW kernels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen, Z., Zuo, W., Hu, Q., Lin, L.: Kernel sparse representation for time series classification. Inf. Sci. 292, 15–26 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Kai, N., Kortelainen, J., Seppänen, T.: Invariant trajectory classification of dynamical systems with a case study on ECG. Pattern Recogn. 42(9), 1832–1844 (2009)

    Article  MATH  Google Scholar 

  3. Lichtenauer, J.F., Hendriks, E.A., Reinders, M.J.: Sign language recognition by combining statistical DTW and independent classification. IEEE Trans. Pattern Anal. Mach. Intell. 30(11), 2040–2046 (2008)

    Article  Google Scholar 

  4. Fu, T.C., Law, C.W., Chan, K.K., Chung, F.L., Ng, C.M.: Stock time series categorization and clustering via SB-tree optimization. In: Wang, L., Jiao, L., Shi, G., Li, X., Liu, J. (eds.) FSKD 2006. LNCS, vol. 4223, pp. 1130–1139. Springer, Heidelberg (2006). doi:10.1007/11881599_141

    Chapter  Google Scholar 

  5. Faloutsos, C., Ranganathan, M., Manolopoulos, Y.: Fast subsequence matching in time-series databases. In: ACM SIGMOD International Conference on Management of Data, vol. 23, pp. 419–429. ACM (2001)

    Google Scholar 

  6. Li, H.L., Guo, C.H.: Piecewise cloud approximation for time series mining. Control Decis. 26(10), 1525–1529 (2011)

    MathSciNet  MATH  Google Scholar 

  7. Li, H., Guo, C., Qiu, W.: Similarity measure based on piecewise linear approximation and derivative dynamic time warping for time series mining. Expert Syst. Appl. 38, 14732–14743 (2011). Pergamon Press, Inc.

    Article  Google Scholar 

  8. Zhang, L., Tao, Z.: Time series classification based on multi-codebook piecewise vector quantized approximation. In: IEEE 27th International Conference on Tools with Artificial Intelligence (ICTAI), pp. 385–390 (2015)

    Google Scholar 

  9. Cortes, C., Vapnik, V.: Support vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  10. Zhang, D., Zuo, W., Zhang, D., Zhang, H.: Time series classification using support vector machine with Gaussian elastic metric kernel. In: IEEE International Conference on Pattern Recognition, pp. 29–32 (2010)

    Google Scholar 

  11. Zhang, L., Zhou, W.D., Chang, P.C., Liu, J., Yan, Z., Wang, T., Li, F.Z.: Kernel sparse representation-based classifier. IEEE Trans. Signal Process. 60(4), 1684–1695 (2012)

    Article  MathSciNet  Google Scholar 

  12. Gao, S., Tsang, I.W., Ma, Y.: Learning category-specific dictionary and shared dictionary for fine-grained image categorization. IEEE Trans. Image Process. 23(2), 623–634 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Berndt, D.J., Clifford, J.: Using dynamic time warping to find patterns in time series. In: KDD workshop, vol. 10, pp. 359–370 (1994)

    Google Scholar 

  14. Vlachos, M., Hadjieleftheriou, M., Gunopulos, D., Keogh, E.: Indexing multi-dimensional time-series with support for multiple distance measures. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 216–225, ACM (2003)

    Google Scholar 

  15. Chen, L., Ng, R.: On the marriage of lp-norms and edit distance. In: Proceedings of the Thirtieth International Conference on Very Large Data Bases, vol. 30, pp. 792–803. VLDB Endowment (2004)

    Google Scholar 

  16. Marteau, P.F.: Time warp edit distance with stiffness adjustment for time series matching. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 306–318 (2009)

    Article  Google Scholar 

  17. Pree, H., Herwig, B., Gruber, T., Sick, B., David, K., Lukowicz, P.: On general purpose time series similarity measures and their use as kernel functions in support vector machines. Inf. Sci. 281(4), 478–495 (2014)

    Article  Google Scholar 

  18. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China under Grant Nos. 61373093 and 61672364, by the Natural Science Foundation of Jiangsu Province of China under Grant No. BK20140008, and by the Soochow Scholar Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xue, Y., Zhang, L., Tao, Z., Wang, B., Li, F. (2017). An Altered Kernel Transformation for Time Series Classification. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, ES. (eds) Neural Information Processing. ICONIP 2017. Lecture Notes in Computer Science(), vol 10638. Springer, Cham. https://doi.org/10.1007/978-3-319-70139-4_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70139-4_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70138-7

  • Online ISBN: 978-3-319-70139-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics