Nothing Special   »   [go: up one dir, main page]

Skip to main content

Accelerated Matrix Factorisation Method for Fuzzy Clustering

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10638))

Included in the following conference series:

Abstract

Factorised fuzzy c-means (F-FCM) based on semi nonnegative matrix factorization is a new approach for fuzzy clustering. It does not need the weighting exponent parameter compared with traditional fuzzy c-means, and not sensitive to initial conditions. However, F-FCM does not propose an efficient method to solve the constrained problem, and just suggests to use a lsqlin() function in MATLAB which lead to slow convergence rate and nonconvergence. In this paper, we propose a method to accelerate the convergence rate of F-FCM combining with a non-monotone accelerate proximal gradient (nmAPG) method. We also propose an efficient method to solve the proximal mapping problem when implementing nmAPG. Finally, the experiment results on synthetic and real-world datasets show the performances and feasibility of our method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Cichocki, A., Zdunek, R., Amari, S.I.: New algorithms for non-negative matrix factorization in applications to blind source separation. In: Proceedings of IEEE International Conference Acoustics, Speech, Signal Processing, vol. 5, pp. 621–624 (2006)

    Google Scholar 

  2. Combettes, P.L., Pesquet, J.C.: Proximal splitting methods in signal processing. In: Bauschke, H., Burachik, R., Combettes, P., Elser, V., Luke, D., Wolkowicz, H. (eds.) Fixed-Point Algorithms for Inverse Problems in Science and Engineering, pp. 185–212. Springer, New York (2011). doi:10.1007/978-1-4419-9569-8_10

    Chapter  Google Scholar 

  3. Ding, C., He, X., Simon, H.: On the equivalence of nonnegative matrix factorization and spectral clustering. In: SDM, vol. 5, pp. 606–610 (2005)

    Google Scholar 

  4. Ding, C., Li, T., Jordan, M.: Convex and semi-nonnegative matrix factorizations. IEEE Trans. Pattern Anal. Mach. Intell. 32(1), 45–55 (2010)

    Article  Google Scholar 

  5. Gill, P.E., Murray, W., Saunders, M.A., Wright, M.H.: Procedures for optimization problems with a mixture of bounds and general linear constraints. ACM Trans. Math. Softw. (TOMS) 10(3), 282–298 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gill, P.E., Murray, W., Wright, M.H.: Practical Optimization (1981)

    Google Scholar 

  7. Guan, N., Tao, D., Luo, Z., Yuan, B.: NeNMF: an optimal gradient method for nonnegative matrix factorization. IEEE Trans. Sig. Process. 60(6), 2882–2898 (2012)

    Article  MathSciNet  Google Scholar 

  8. Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negativ matrix factorization. Nature 401(6755), 788–91 (1999)

    Article  MATH  Google Scholar 

  9. Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization. In: Advances in Neural Information Processing Systems, pp. 556–562 (2001)

    Google Scholar 

  10. Li, H., Lin, Z.: Accelerated proximal gradient methods for nonconvex programming. In: Advances in Neural Information Processing Systems, pp. 379–387 (2015)

    Google Scholar 

  11. Ma, W.K., et al.: A signal processing perspective on hyperspectral unmixing: insights from remote sensing. IEEE Sig. Process. Mag. 31(1), 67–81 (2014)

    Article  MathSciNet  Google Scholar 

  12. Nicolas, G.: The why and how of nonnegative matrix factorization. In: Regularization, Optimization, Kernels, and Support Vector Machines, vol. 12, no. 257 (2014)

    Google Scholar 

  13. Nocedal, J., Wright, S.: Numerical Optimization, pp. 185–212 (2006)

    Google Scholar 

  14. Pal, N.R., Bezdek, J.C.: On cluster validity for the fuzzy c-means model. IEEE Trans. Fuzzy Syst. 3(3), 370–379 (1995)

    Article  Google Scholar 

  15. Parikh, N., Boyd, S.: Proximal algorithms. Found. Trends Optim. 1(3), 127–239 (2013)

    Article  Google Scholar 

  16. Pompili, F., Gillis, N., Absil, P., Glineur, F.: Two algorithms for orthogonal nonnegative matrix factorization with application to clustering. Neurocomputing 141, 15–25 (2014)

    Article  Google Scholar 

  17. Shahnaz, F., Berry, M., Pauca, V., Plemmons, R.: Document clustering using nonnegative matrix factorization. Inf. Process. Manag. 42(2), 373–386 (2006)

    Article  MATH  Google Scholar 

  18. Suleman, A.: A convex semi-nonnegative matrix factorisation approach to fuzzy c-means clustering. Fuzzy Sets Syst. 270, 90–110 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Trigeorgis, G., Bousmalis, K., Zafeiriou, S., Schuller, B.: A deep semi-NMF model for learning hidden representations. In: ICML, pp. 1692–1700 (2014)

    Google Scholar 

  20. Zha, H., He, X., Ding, C., Gu, M., Simon, H.D.: Spectral relaxation for k-means clustering. In: Advances in Neural Information Processing Systems, pp. 1057–1064 (2001)

    Google Scholar 

  21. Zhou, G., Cichocki, A., Zhang, Y., Mandic, D.P.: Group component analysis for multiblock data: common and individual feature extraction. IEEE Trans. Neural Netw. Learn. Syst. 27(11), 2426–2439 (2015)

    Article  MathSciNet  Google Scholar 

  22. Zhou, G., Zhao, Q., Zhang, Y., Adali, T., Xie, S., Cichocki, A.: Linked component analysis from matrices to high-order tensors: applications to biomedical data. Proc. IEEE 104(2), 310–331 (2015)

    Article  Google Scholar 

Download references

Acknowledgement

This research was supported by the National Natural Science Foundation of China (Grant Nos. 11627802, 51678249), by the Science and Technology Projects of Guangdong (2013A011403003), and by the Science and Technology Projects of Guangzhou (201508010023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhan, M., Li, B. (2017). Accelerated Matrix Factorisation Method for Fuzzy Clustering. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, ES. (eds) Neural Information Processing. ICONIP 2017. Lecture Notes in Computer Science(), vol 10638. Springer, Cham. https://doi.org/10.1007/978-3-319-70139-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70139-4_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70138-7

  • Online ISBN: 978-3-319-70139-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics