Abstract
The change of emotions is a temporal dependent process. In this paper, a Bimodal-LSTM model is introduced to take temporal information into account for emotion recognition with multimodal signals. We extend the implementation of denoising autoencoders and adopt the Bimodal Deep Denoising AutoEncoder modal. Both models are evaluated on a public dataset, SEED, using EEG features and eye movement features as inputs. Our experimental results indicate that the Bimodal-LSTM model outperforms other state-of-the-art methods with a mean accuracy of 93.97%. The Bimodal-LSTM model is also examined on DEAP dataset with EEG and peripheral physiological signals, and it achieves the state-of-the-art results with a mean accuracy of 83.53%.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bengio, Y., Simard, P.Y., Frasconi, P.: Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Netw. 5(2), 157–166 (1994)
Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)
Hinton, G.E., Zemel, R.S.: Autoencoders, minimum description length and helmholtz free energy. In: NIPS, pp. 3–10 (1994)
Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)
Koelstra, S., Yazdani, A., Soleymani, M., Mühl, C., Lee, J., Nijholt, A., Pun, T., Ebrahimi, T., Patras, I.: Single trial classification of EEG and peripheral physiological signals for recognition of emotions induced by music videos. In: Yao, Y., Sun, R., Poggio, T., Liu, J., Zhong, N., Huang, J. (eds.) BI 2010. LNCS, vol. 6334, pp. 89–100. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15314-3_9
Liu, W., Zheng, W.L., Lu, B.L.: Emotion recognition using multimodal deep learning. In: Hirose, A., Ozawa, S., Doya, K., Ikeda, K., Lee, M., Liu, D. (eds.) ICONIP 2016. LNCS, vol. 9948, pp. 521–529. Springer, Cham (2016). doi:10.1007/978-3-319-46672-9_58
Lu, Y., Zheng, W.L., Li, B., Lu, B.L.: Combining eye movements and EEG to enhance emotion recognition. In: IJCAI, pp. 1170–1176 (2015)
Saneiro, M., Santos, O.C., Salmeronmajadas, S., Boticario, J.G.: Towards emotion detection in educational scenarios from facial expressions and body movements through multimodal approaches. Sci. World J. 2014, 484873 (2014)
Tang, Y.: Deep learning using linear support vector machines. Workshop on Representational Learning, ICML (2013)
Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.: Extracting and composing robust features with denoising autoencoders. In: ICML, pp. 1096–1103 (2008)
Wang, X.W., Nie, D., Lu, B.L.: Emotional state classification from eeg data using machine learning approach. Neurocomputing 129, 94–106 (2014)
Wu, Y., Schuster, M., Chen, Z., Le, Q.V., Norouzi, M., Macherey, W., Krikun, M., Cao, Y., Gao, Q., Macherey, K., et al.: Google’s neural machine translation system: bridging the gap between human and machine translation. arXiv preprint (2016). arXiv:1609.08144
Xiong, W., Droppo, J., Huang, X., Seide, F., Seltzer, M., Stolcke, A., Yu, D., Zweig, G.: The microsoft 2016 conversational speech recognition system. In: 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5255–5259. IEEE (2017)
Yang, Y., Wu, Q.J., Zheng, W.L., Lu, B.L.: EEG-based emotion recognition using hierarchical network with subnetwork nodes. IEEE Trans. Cogn. Dev. Syst. (2017). doi:10.1109/TCDS.2017.2685338
Yin, Z., Zhao, M., Wang, Y., Yang, J., Zhang, J.: Recognition of emotions using multimodal physiological signals and an ensemble deep learning model. Comput. Methods Prog. Biomed. 140, 93–110 (2017)
Acknowledgments
This work was supported in part by grants from the National Key Research and Development Program of China (Grant No. 2017YFB1002501), the National Natural Science Foundation of China (Grant No. 61673266), the Major Basic Research Program of Shanghai Science and Technology Committee (Grant No. 15JC1400103), ZBYY-MOE Joint Funding (Grant No. 6141A02022604), and the Technology Research and Development Program of China Railway Corporation (Grant No. 2016Z003-B).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Tang, H., Liu, W., Zheng, WL., Lu, BL. (2017). Multimodal Emotion Recognition Using Deep Neural Networks. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, ES. (eds) Neural Information Processing. ICONIP 2017. Lecture Notes in Computer Science(), vol 10637. Springer, Cham. https://doi.org/10.1007/978-3-319-70093-9_86
Download citation
DOI: https://doi.org/10.1007/978-3-319-70093-9_86
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-70092-2
Online ISBN: 978-3-319-70093-9
eBook Packages: Computer ScienceComputer Science (R0)