Nothing Special   »   [go: up one dir, main page]

Skip to main content

Multimodal Emotion Recognition Using Deep Neural Networks

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10637))

Included in the following conference series:

  • 5895 Accesses

Abstract

The change of emotions is a temporal dependent process. In this paper, a Bimodal-LSTM model is introduced to take temporal information into account for emotion recognition with multimodal signals. We extend the implementation of denoising autoencoders and adopt the Bimodal Deep Denoising AutoEncoder modal. Both models are evaluated on a public dataset, SEED, using EEG features and eye movement features as inputs. Our experimental results indicate that the Bimodal-LSTM model outperforms other state-of-the-art methods with a mean accuracy of 93.97%. The Bimodal-LSTM model is also examined on DEAP dataset with EEG and peripheral physiological signals, and it achieves the state-of-the-art results with a mean accuracy of 83.53%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://bcmi.sjtu.edu.cn/~seed/.

  2. 2.

    http://www.eecs.qmul.ac.uk/mmv/datasets/deap/.

  3. 3.

    http://www.csie.ntu.edu.tw/~cjlin/liblinear/.

  4. 4.

    https://www.tensorflow.org/

References

  1. Bengio, Y., Simard, P.Y., Frasconi, P.: Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Netw. 5(2), 157–166 (1994)

    Article  Google Scholar 

  2. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  3. Hinton, G.E., Zemel, R.S.: Autoencoders, minimum description length and helmholtz free energy. In: NIPS, pp. 3–10 (1994)

    Google Scholar 

  4. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  5. Koelstra, S., Yazdani, A., Soleymani, M., Mühl, C., Lee, J., Nijholt, A., Pun, T., Ebrahimi, T., Patras, I.: Single trial classification of EEG and peripheral physiological signals for recognition of emotions induced by music videos. In: Yao, Y., Sun, R., Poggio, T., Liu, J., Zhong, N., Huang, J. (eds.) BI 2010. LNCS, vol. 6334, pp. 89–100. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15314-3_9

    Chapter  Google Scholar 

  6. Liu, W., Zheng, W.L., Lu, B.L.: Emotion recognition using multimodal deep learning. In: Hirose, A., Ozawa, S., Doya, K., Ikeda, K., Lee, M., Liu, D. (eds.) ICONIP 2016. LNCS, vol. 9948, pp. 521–529. Springer, Cham (2016). doi:10.1007/978-3-319-46672-9_58

    Chapter  Google Scholar 

  7. Lu, Y., Zheng, W.L., Li, B., Lu, B.L.: Combining eye movements and EEG to enhance emotion recognition. In: IJCAI, pp. 1170–1176 (2015)

    Google Scholar 

  8. Saneiro, M., Santos, O.C., Salmeronmajadas, S., Boticario, J.G.: Towards emotion detection in educational scenarios from facial expressions and body movements through multimodal approaches. Sci. World J. 2014, 484873 (2014)

    Article  Google Scholar 

  9. Tang, Y.: Deep learning using linear support vector machines. Workshop on Representational Learning, ICML (2013)

    Google Scholar 

  10. Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.: Extracting and composing robust features with denoising autoencoders. In: ICML, pp. 1096–1103 (2008)

    Google Scholar 

  11. Wang, X.W., Nie, D., Lu, B.L.: Emotional state classification from eeg data using machine learning approach. Neurocomputing 129, 94–106 (2014)

    Article  Google Scholar 

  12. Wu, Y., Schuster, M., Chen, Z., Le, Q.V., Norouzi, M., Macherey, W., Krikun, M., Cao, Y., Gao, Q., Macherey, K., et al.: Google’s neural machine translation system: bridging the gap between human and machine translation. arXiv preprint (2016). arXiv:1609.08144

  13. Xiong, W., Droppo, J., Huang, X., Seide, F., Seltzer, M., Stolcke, A., Yu, D., Zweig, G.: The microsoft 2016 conversational speech recognition system. In: 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5255–5259. IEEE (2017)

    Google Scholar 

  14. Yang, Y., Wu, Q.J., Zheng, W.L., Lu, B.L.: EEG-based emotion recognition using hierarchical network with subnetwork nodes. IEEE Trans. Cogn. Dev. Syst. (2017). doi:10.1109/TCDS.2017.2685338

  15. Yin, Z., Zhao, M., Wang, Y., Yang, J., Zhang, J.: Recognition of emotions using multimodal physiological signals and an ensemble deep learning model. Comput. Methods Prog. Biomed. 140, 93–110 (2017)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from the National Key Research and Development Program of China (Grant No. 2017YFB1002501), the National Natural Science Foundation of China (Grant No. 61673266), the Major Basic Research Program of Shanghai Science and Technology Committee (Grant No. 15JC1400103), ZBYY-MOE Joint Funding (Grant No. 6141A02022604), and the Technology Research and Development Program of China Railway Corporation (Grant No. 2016Z003-B).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bao-Liang Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Tang, H., Liu, W., Zheng, WL., Lu, BL. (2017). Multimodal Emotion Recognition Using Deep Neural Networks. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, ES. (eds) Neural Information Processing. ICONIP 2017. Lecture Notes in Computer Science(), vol 10637. Springer, Cham. https://doi.org/10.1007/978-3-319-70093-9_86

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70093-9_86

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70092-2

  • Online ISBN: 978-3-319-70093-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics