Abstract
In this work we analyze the security of cubic cryptographic constructions with respect to rank weakness. We detail how to extend the big field idea from quadratic to cubic, and show that the same rank defect occurs. We extend the min-rank problem and propose an algorithm to solve it in this setting. We show that for fixed small rank, the complexity is even lower than for the quadratic case. However, the rank of a cubic polynomial in n variables can be larger than n, and in this case the algorithm is very inefficient. We show that the rank of the differential is not necessarily smaller, rendering this line of attack useless if the rank is large enough. Similarly, the algebraic attack is exponential in the rank, thus useless for high rank.
D. E. Escudero—Work done whilst at Universidad Nacional de Colombia.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Notice that we are using an upper bound to estimate the complexity. This is a customary usage for this kind of attacks. In practice, it has been observed [32] that, on average, this bound is not too far from the actual complexity.
- 2.
References
Aliasgari, M., Sadeghi, M.R., Panario, D.: Gröbner bases for lattices and an algebraic decoding algorithm. In: 2011 49th Annual Allerton Conference on Communication, Control, and Computing (Allerton), pp. 1414–1415, September 2011
Bardet, M., Faugère, J.-C., Salvy, B., Yang, B.-Y.: Asymptotic behaviour of the degree of regularity of semi-regular polynomial systems. In: Eighth International Symposium on Effective Methods in Algebraic Geometry, MEGA 2005, pp. 1–14 (2005)
Bettale, L., Faugère, J.-C., Perret, L.: Cryptanalysis of HFE, multi-HFE and variants for odd and even characteristic. Des. Codes Crypt. 69(1), 1–52 (2013)
Buss, J.F., Frandsen, G.S., Shallit, J.O.: The computational complexity of some problems of linear algebra. J. Comput. Syst. Sci. 58(3), 572–596 (1999)
Chen, C.-H.O., Chen, M.-S., Ding, J., Werner, F., Yang, B.-Y.: Odd-char multivariate hidden field equations. IACR Cryptology ePrint Archive, 2008:543 (2008)
Ding, J., Hodges, T.J.: Inverting HFE systems is quasi-polynomial for all fields. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 724–742. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_41
Ding, J., Petzoldt, A., Wang, L.: The cubic simple matrix encryption scheme. In: Mosca, M. (ed.) PQCrypto 2014. LNCS, vol. 8772, pp. 76–87. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11659-4_5
Escudero, D.: Groebner bases and applications to the security of multivariate public key cryptosystems (2016). http://cs.au.dk/~escudero/files/TDG.pdf. Accessed 25 Nov 2017
Faugère, J.-C., El Din, M.S., Spaenlehauer, P.-J.: Gröbner bases of bihomogeneous ideals generated by polynomials of bidegree (1,1): algorithms and complexity. J. Symb. Comput. 46(4), 406–437 (2011)
Faugère, J.-C.: A new efficient algorithm for computing Gröbner bases \((F_4)\). J. Pure Appl. Algebra 139(1-3), 61–88 (1999). (Effective methods in algebraic geometry, Saint-Malo (1998))
Faugère, J.C.: A new efficient algorithm for computing Gröbner bases without reduction to zero (f5). In: Proceedings of 2002 International Symposium on Symbolic and Algebraic Computation, ISSAC 2002, pp. 75–83. ACM, New York (2002)
Faugère, J.-C., Levy-dit-Vehel, F., Perret, L.: Cryptanalysis of MinRank. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 280–296. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5_16
Goubin, L., Courtois, N.T.: Cryptanalysis of the TTM cryptosystem. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 44–57. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44448-3_4
Hashimoto, Y.: Multivariate public key cryptosystems. In: Takagi, T., Wakayama, M., Tanaka, K., Kunihiro, N., Kimoto, K., Duong, D. (eds.) Mathematical Modelling for Next-Generation Cryptography. Mathematics for Industry, vol. 29, pp. 17–42. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-5065-7_2
Hillar, C.J., Lim, L.-H.: Most tensor problems are NP-hard. J. ACM 60(6), 45:1–45:39 (2013)
Hodges, T.J., Petit, C., Schlather, J.: First fall degree and weil descent. Finite Fields Appl. 30, 155–177 (2014)
Howell, T.D.: Global properties of tensor rank. Linear Algebra Appl. 22(Suppl. C), 9–23 (1978)
Kipnis, A., Shamir, A.: Cryptanalysis of the HFE public key cryptosystem by relinearization. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 19–30. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_2
Kruskal, J.B.: Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics. Linear Algebra Appl. 18(2), 95–138 (1977)
Landsberg, J.M.: Tensors: Geometry and Applications. Graduate Studies in Mathematics, vol. 128. American Mathematical Society, Providence (2012)
Lidl, R., Niederreiter, H.: Finite Fields. Encyclopedia of Mathematics and Its Applications, 2nd edn, vol. 20. Cambridge University Press, Cambridge (1997). With a foreword by P.M. Cohn
Makarim, R.H., Stevens, M.: M4GB: an efficient Gröbner-basis algorithm. In: Proceedings of 2017 ACM on International Symposium on Symbolic and Algebraic Computation, ISSAC 2017, pp. 293–300. ACM, New York (2017)
Matsumoto, T., Imai, H.: Public quadratic polynomial-tuples for efficient signature-verification and message-encryption. In: Barstow, D., et al. (eds.) EUROCRYPT 1988. LNCS, vol. 330, pp. 419–453. Springer, Heidelberg (1988). https://doi.org/10.1007/3-540-45961-8_39
Moody, D., Perlner, R., Smith-Tone, D.: An asymptotically optimal structural attack on the ABC multivariate encryption scheme. In: Mosca, M. (ed.) PQCrypto 2014. LNCS, vol. 8772, pp. 180–196. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11659-4_11
Moody, D., Perlner, R., Smith-Tone, D.: Improved attacks for characteristic-2 parameters of the cubic ABC simple matrix encryption scheme. In: Lange, T., Takagi, T. (eds.) PQCrypto 2017. LNCS, vol. 10346, pp. 255–271. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59879-6_15
Moody, D., Perlner, R., Smith-Tone, D.: Key recovery attack on the cubic ABC simple matrix multivariate encryption scheme. In: Avanzi, R., Heys, H. (eds.) SAC 2016. LNCS, vol. 10532, pp. 543–558. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69453-5_29
Patarin, J.: Hidden fields equations (HFE) and isomorphisms of polynomials (IP): two new families of asymmetric algorithms. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 33–48. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68339-9_4
Patarin, J., Courtois, N., Goubin, L.: QUARTZ, 128-bit long digital signatures. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 282–297. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45353-9_21
Porras, J., Baena, J., Ding, J.: ZHFE, a new multivariate public key encryption scheme. In: Mosca, M. (ed.) PQCrypto 2014. LNCS, vol. 8772, pp. 229–245. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11659-4_14
Shmuel, F.: Remarks on the symmetric rank of symmetric tensors, January 2016. arXiv.org/pdf/1505.00860
Shmuel, F., Stawiska, M.: Best approximation on semi-algebraic sets and k-border rank approximation of symmetric tensors, November 2013. arXiv.org/pdf/1311.1561
Spaenlehauer, P.-J.: Solving multi-homogeneous and determinantal systems. Algorithms - Complexity - Applications. Ph.D. thesis, Université Paris 6 (2012)
Yang, B.-Y., Chen, J.-M.: Building secure tame-like multivariate public-key cryptosystems: the new TTS. In: Boyd, C., González Nieto, J.M. (eds.) ACISP 2005. LNCS, vol. 3574, pp. 518–531. Springer, Heidelberg (2005). https://doi.org/10.1007/11506157_43
Barrientos, I.Á., Borges-Quintana, M., Borges-Trenard, M.A., Panario, D.: Computing Gröbner bases associated with lattices. Adv. Math. Commun. 10(4), 851–860 (2016)
Acknowledgements
This work was partially supported by “Fondo Nacional de Financiamiento para la Ciencia, la Tecnología y la Innovación Francisco José de Caldas”, Colciencias (Colombia), Project No. 111865842333 and Contract No. 049-2015.
We would like to thank Jintai Ding for very useful discussions. We would also like to thank the reviewers of PQCrypto 2018 for their constructive reviews and suggestions. And last but not least, we thank the Facultad de Ciencias of the Universidad Nacional de Colombia sede Medellín for granting us access to the Enlace server, where we ran most of the experiments of this paper.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Baena, J., Cabarcas, D., Escudero, D.E., Khathuria, K., Verbel, J. (2018). Rank Analysis of Cubic Multivariate Cryptosystems. In: Lange, T., Steinwandt, R. (eds) Post-Quantum Cryptography. PQCrypto 2018. Lecture Notes in Computer Science(), vol 10786. Springer, Cham. https://doi.org/10.1007/978-3-319-79063-3_17
Download citation
DOI: https://doi.org/10.1007/978-3-319-79063-3_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-79062-6
Online ISBN: 978-3-319-79063-3
eBook Packages: Computer ScienceComputer Science (R0)