Nothing Special   »   [go: up one dir, main page]

Skip to main content

Cardiac Pulse Modeling Using a Modified van der Pol Oscillator and Genetic Algorithms

  • Conference paper
  • First Online:
Bioinformatics and Biomedical Engineering (IWBBIO 2018)

Abstract

This paper proposes an approach for modeling cardiac pulses from electrocardiographic signals (ECG). A modified van der Pol oscillator model (mvP) is analyzed, which, under a proper configuration, is capable of describing action potentials, and, therefore, it can be adapted for modeling a normal cardiac pulse. Adequate parameters of the mvP system response are estimated using non-linear dynamics methods, like dynamic time warping (DTW). In order to represent an adaptive response for each individual heartbeat, a parameter tuning optimization method is applied which is based on a genetic algorithm that generates responses that morphologically resemble real ECG. This feature is particularly relevant since heartbeats have intrinsically strong variability in terms of both shape and length. Experiments are performed over real ECG from MIT-BIH arrhythmias database. The application of the optimization process shows that the mvP oscillator can be used properly to model the ideal cardiac rate pulse.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bayar, N., Çay, H.F., Erkal, Z., Sezer, İ., Arslan, Ş., Çağırcı, G., Çay, S., Yüksel, İ.Ö., Köklü, E.: The importance of fragmented QRS in the early detection of cardiac involvement in patients with systemic sclerosis. Anatol. J. Cardiol. 15(3), 209–212 (2015)

    Article  Google Scholar 

  2. Dodo-Siddo, M., Sarr, S., Ndiaye, M., Bodian, M., Ndongo, S., et al.: Importance of electrocardiogram for detection of preclinical abnormalities in patients with rheumatoid arthritis without cardiovascular events. J. Arthritis 4(155), 2 (2015)

    Google Scholar 

  3. Zuluaga-Ríos, C.D., Álvarez-López, M.A., Orozco-Gutiérrez, Á.A.: A comparison of robust kalman filtering methods for artifact correction in heart rate variability analysis. Tecno. Lógicas 18(34), 25–35 (2015)

    Article  Google Scholar 

  4. González-Barajas, J.E., Velandia-Cárdenas, C., Nieto-Camacho, J.: Implementation of real-time digital filter for the R wave detection. Tecno. Lógicas 18(34), 75–86 (2015)

    Article  Google Scholar 

  5. Castro-Ospina, A., Castro-Hoyos, C., Peluffo-Ordonez, D., Castellanos-Dominguez, G.: Novel heuristic search for ventricular arrhythmia detection using normalized cut clustering. In: 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 7076–7079. IEEE (2013)

    Google Scholar 

  6. Rodríguez-Sotelo, J.L., Peluffo-Ordonez, D., Cuesta-Frau, D., Castellanos-Domínguez, G.: Unsupervised feature relevance analysis applied to improve ECG heartbeat clustering. Comput. Methods Programs Biomed. 108(1), 250–261 (2012)

    Article  Google Scholar 

  7. Abawajy, J.H., Kelarev, A., Chowdhury, M.: Multistage approach for clustering and classification of ECG data. Comput. Methods Programs Biomed. 112(3), 720–730 (2013)

    Article  Google Scholar 

  8. Moody, G.B., Mark, R.G.: The MIT-BIH arrhythmia database on CD-ROM and software for use with it. In: 1990 Proceedings of the Computers in Cardiology, pp. 185–188. IEEE (1990)

    Google Scholar 

  9. Jovic, A., Bogunovic, N.: Feature extraction for ECG time-series mining based on chaos theory. In: 29th International Conference on Information Technology Interfaces, ITI 2007, pp. 63–68. IEEE (2007)

    Google Scholar 

  10. Acharya, R., Faust, O., Kannathal, N., Chua, T., Laxminarayan, S.: Non-linear analysis of EEG signals at various sleep stages. Comput. Methods Programs Biomed. 80(1), 37–45 (2005)

    Article  Google Scholar 

  11. Faust, O., Acharya, U.R., Molinari, F., Chattopadhyay, S., Tamura, T.: Linear and non-linear analysis of cardiac health in diabetic subjects. Biomed. Sig. Process. Control 7(3), 295–302 (2012)

    Article  Google Scholar 

  12. Peluffo-Ordóñez, D., Rodríguez-Sótelo, J., Revelo-Fuelagán, E., Ospina-Aguirre, C., Olivard-Tost, G.: Generalized Bonhoeffer-van der Pol oscillator for modelling cardiac pulse: preliminary results. In: 2015 IEEE 2nd Colombian Conference on Automatic Control (CCAC), pp. 1–6. IEEE (2015)

    Google Scholar 

  13. Fitzhugh, R.: Impulses and physiological states in theoretical models nerve membrane. Biophys. J. 1(6), 445–466 (1961)

    Article  Google Scholar 

  14. Ferreira, B.B., Savi, M.A., de Paula, A.S.: Chaos control applied to cardiac rhythms represented by ECG signals. Phys. Scripta 89(10), 105–203 (2014)

    Google Scholar 

  15. Sato, S., Nomura, T., et al.: Bonhoeffer-van der Pol oscillator model of the sino-atrial node: a possible mechanism of heart rate regulation. Methods Inf. Med. 33(1), 116–119 (1994)

    Article  Google Scholar 

  16. Cuesta-Frau, D., Micó-Tormos, P., Aboy, M., Biagetti, M.O., Austin, D., Quinteiro, R.A.: Enhanced modified moving average analysis of T-wave alternans using a curve matching method: a simulation study. Med. Biol. Eng. Comput. 47(3), 323–331 (2009)

    Article  Google Scholar 

  17. van der Pol Jun, B.: LXXXVIII. On relaxation-oscillations. Lond. Edinb. Dublin Philos. Mag. J. Sc. 2(11), 978–992 (1926)

    Article  Google Scholar 

  18. Grudziński, K., Żebrowski, J.J.: Modeling cardiac pacemakers with relaxation oscillators. Phys. A: Stat. Mech. Appl. 336(1), 153–162 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrés Eduardo Castro-Ospina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lopez-Chamorro, F.M. et al. (2018). Cardiac Pulse Modeling Using a Modified van der Pol Oscillator and Genetic Algorithms. In: Rojas, I., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2018. Lecture Notes in Computer Science(), vol 10813. Springer, Cham. https://doi.org/10.1007/978-3-319-78723-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78723-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78722-0

  • Online ISBN: 978-3-319-78723-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics