Nothing Special   »   [go: up one dir, main page]

Skip to main content

Performance Assessment of the Incremental Strong Constraints 4DVAR Algorithm in ROMS

  • Conference paper
  • First Online:
Parallel Processing and Applied Mathematics (PPAM 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10778))

  • 1062 Accesses

Abstract

We consider the Incremental Strong constraint 4D VARiational (IS4DVAR) algorithm for data assimilation implemented in ROMS with the aim to study its performance in terms of strong scaling scalability on computing architectures such as a cluster of CPUs. We consider realistic test cases with data collected in enclosed and semi enclosed seas, namely, Caspian sea, West Africa/Angola, as well as data collected into the California bay. The computing architecture we use is currently available at Imperial College London. The analysis allows us to highlight that the ROMS-IS4DVAR performance on emerging architectures depends on a deep relation among the problems size, the domain decomposition approach and the computing architecture characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Relation between \(t_{com}\) and \(t_{calc}\) (namely, the value of the parameter q) heavily depends on how the software under consideration is able to efficiently exploit the parallelism of such advanced architectures (the so called sustained performance).

  2. 2.

    Helen is an SGI ICE 8200EX system. The first part of the system is comprised of 122 nodes. Each node has two 4-core 2.93 GHz Intel X5570 (Nehalem) processors and 24 GB of RAM. The processors are hyperthreaded - each physical core appears as two logical processors. The second part of the system consists of two extra ICE 8400EX racks with 179 extra nodes. These nodes have two 6-core 2.93 GHz X5670 (Westmere) processors and 24 GB of RAM. Like the Nehalem processors these are hyperthreaded. Then, the system has a total of 602 processors.

References

  1. Antonelli, L., Carracciuolo, L., Ceccarelli, M., D’Amore, L., Murli, A.: Total variation regularization for edge preserving 3D SPECT imaging in high performance computing environments. In: Sloot, P.M.A., Hoekstra, A.G., Tan, C.J.K., Dongarra, J.J. (eds.) ICCS 2002. LNCS, vol. 2330, pp. 171–180. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46080-2_18

    Chapter  Google Scholar 

  2. Arcucci, R., D’Amore, L., Celestino, S., Laccetti, G., Murli, A.: A scalable numerical algorithm for solving Tikhonov regularization problems. In: Wyrzykowski, R., Deelman, E., Dongarra, J., Karczewski, K., Kitowski, J., Wiatr, K. (eds.) PPAM 2015. LNCS, vol. 9574, pp. 45–54. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32152-3_5

    Chapter  Google Scholar 

  3. Arcucci, R., D’Amore, L., Carracciuolo, L., Murli, A.: A scalable variational data assimilation. J. Sci. Comput. 61, 239–257 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Arcucci, R., D’Amore, L., Marcellino, L., Murli, A.: Hpc computation issues of the incremental 3D variational data assimilation scheme in oceanvar software. J. Numer. Anal. Ind. Appl. Math. 7, 91–105 (2012)

    MathSciNet  MATH  Google Scholar 

  5. Boccia, V., Carracciuolo, L., Laccetti, G., Lapegna, M., Mele, V.: HADAB: enabling fault tolerance in parallel applications running in distributed environments. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds.) PPAM 2011. LNCS, vol. 7203, pp. 700–709. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31464-3_71

    Chapter  Google Scholar 

  6. Carracciuolo, L., D’Amore, L., Murli, A.: Towards a parallel component for imaging in PETSc programming environment: a case study in 3-D echocardiography. Parallel Comput. 32, 67–83 (2006)

    Article  MathSciNet  Google Scholar 

  7. Caruso, P., Laccetti, G., Lapegna, M.: A performance contract system in a grid enabling, component based programming environment. In: Sloot, P.M.A., Hoekstra, A.G., Priol, T., Reinefeld, A., Bubak, M. (eds.) EGC 2005. LNCS, vol. 3470, pp. 982–992. Springer, Heidelberg (2005). https://doi.org/10.1007/11508380_100

    Chapter  Google Scholar 

  8. D’Amore, L., Campagna, R., Galletti, A., Marcellino, L., Murli, A.: A smoothing spline that approximates laplace transform functions only known on measurements on the real axis. Inverse Probl. 28, 025007 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. D’Amore, L., Laccetti, G., Romano, D., Scotti, G., Murli, A.: Towards a parallel component in a GPU-CUDA environment: a case study with the L-BFGS harwell routine. Int. J. Comput. Math. 92, 59–76 (2015)

    Article  MATH  Google Scholar 

  10. D’Amore, L., Marcellino, L., Mele, V., Romano, D.: Deconvolution of 3D fluorescence microscopy images using graphics processing units. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds.) PPAM 2011. LNCS, vol. 7203, pp. 690–699. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31464-3_70

    Chapter  Google Scholar 

  11. Gregoretti, F., Laccetti, G., Murli, A., Oliva, G., Scafuri, U.: MGF: a grid-enabled MPI library. Future Gener. Comput. Syst. (FGCS) 24, 158–165 (2008)

    Article  Google Scholar 

  12. Guarracino, M.R., Laccetti, G., Murli, A.: Application oriented brokering in medical imaging: algorithms and software architecture. In: Sloot, P.M.A., Hoekstra, A.G., Priol, T., Reinefeld, A., Bubak, M. (eds.) EGC 2005. LNCS, vol. 3470, pp. 972–981. Springer, Heidelberg (2005). https://doi.org/10.1007/11508380_99

    Chapter  Google Scholar 

  13. Gurol, S., Weaver, A.T., Moore, A.M., Piacentini, M., Arango, H.G., Gratton, S.: B-preconditioned minimization algorithms for variational data assimilation with the dual formulation. Q. J. Roy. Metereol. Soc. 140, 539–556 (2014)

    Article  Google Scholar 

  14. Laccetti, G., Lapegna, M.: PAMIHR. A parallel FORTRAN program for multidimensional quadrature on distributed memory architectures. In: Amestoy, P., Berger, P., Daydé, M., Ruiz, D., Duff, I., Frayssé, V., Giraud, L. (eds.) Euro-Par 1999. LNCS, vol. 1685, pp. 1144–1148. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48311-X_160

    Chapter  Google Scholar 

  15. Maschhoff, A.J., Sorensen, D.: A portable implementation of ARPACK for distributed memory parallel architectures, vol. 91 (1996)

    Google Scholar 

  16. Montella, R., Giunta, G., Laccetti, G.: Virtualizing high-end GPGPUS on ARM clusters for the next generation of high performance cloud computing. Clust. Comput. 17, 139–152 (2014)

    Article  Google Scholar 

  17. Montella, R., Giunta, G., Laccetti, G., Lapegna, M., Palmieri, C., Ferraro, C., Pelliccia, V.: Virtualizing CUDA enabled GPGPUs on ARM clusters. In: Wyrzykowski, R., Deelman, E., Dongarra, J., Karczewski, K., Kitowski, J., Wiatr, K. (eds.) PPAM 2015. LNCS, vol. 9574, pp. 3–14. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32152-3_1

    Chapter  Google Scholar 

  18. Moore, A.M., Arango, H.G., Broquet, G., Edwards, C., Veneziani, M., Powell, B., Foley, D., Doyle, J.D., Costa, D., Robinson, P.: The Regional Ocean Modeling System (ROMS) 4-dimensional variational data assimilation systems. Part II - performance and application to the California Current System. Prog. Oceanogr. 91(1), 50–73 (2011)

    Article  Google Scholar 

  19. Moore, A.M., Arango, H.G., Broquet, G., Edwards, C., Veneziani, M., Powell, B., Foley, D., Doyle, J.D., Costa, D., Robinson, P.: The Regional Ocean Modeling System (ROMS) 4-dimensional variational data assimilation systems. Part III - observation impact and observation sensitivity in the California Current System. Prog. Oceanogr. 91(1), 74–94 (2011)

    Article  Google Scholar 

  20. Moore, A.M., Arango, H.G., Broquet, G., Powell, B.S., Weaver, A.T., Zavala-Garay, J.: The Regional Ocean Modeling System (ROMS) 4-dimensional variational data assimilation systems. Part I - system overview and formulation. Prog. Oceanogr. 91(1), 34–49 (2011)

    Article  Google Scholar 

  21. Murli, A., Boccia, V., Carracciuolo, L., D’Amore, L., Laccetti, G., Lapegna, M.: Monitoring and migration of a PETSc-based parallel application for medical imaging in a grid computing PSE. In: Gaffney, P.W., Pool, J.C.T. (eds.) Grid-Based Problem Solving Environments. ITIFIP, vol. 239, pp. 421–432. Springer, Boston, MA (2007). https://doi.org/10.1007/978-0-387-73659-4_25

    Chapter  Google Scholar 

  22. Murli, A., Cuomo, S., D’Amore, L., Galletti, A.: Numerical regularization of a real inversion formula based on the Laplace transform’s eigenfunction expansion of the inverse function. Inverse Prob. 23(2), 713–731 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Murli, A., D’Amore, L., Laccetti, G., Gregoretti, F., Oliva, G.: A multi-grained distributed implementation of the parallel block conjugate gradient algorithm. Concurr. Comput.: Pract. Exp. 22, 2053–2072 (2010)

    Google Scholar 

  24. Nocedal, J., Wright, S.: Numerical Optimization. Springer, New York (1999). https://doi.org/10.1007/978-0-387-40065-5

    Book  MATH  Google Scholar 

Download references

Acknowledgment

The research has received funding from European Commission under H2020-MSCA-RISE NASDAC project (grant agreement n. 691184).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luisa D’Amore .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

D’Amore, L. et al. (2018). Performance Assessment of the Incremental Strong Constraints 4DVAR Algorithm in ROMS. In: Wyrzykowski, R., Dongarra, J., Deelman, E., Karczewski, K. (eds) Parallel Processing and Applied Mathematics. PPAM 2017. Lecture Notes in Computer Science(), vol 10778. Springer, Cham. https://doi.org/10.1007/978-3-319-78054-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78054-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78053-5

  • Online ISBN: 978-3-319-78054-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics