Nothing Special   »   [go: up one dir, main page]

Skip to main content

Efficient Parallel Generation of Many-Nucleon Basis for Large-Scale Ab Initio Nuclear Structure Calculations

  • Conference paper
  • First Online:
Parallel Processing and Applied Mathematics (PPAM 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10778))

Abstract

We address the problem of generating a many-nucleon basis for ab initio nuclear structure modeling, which quickly becomes a significant runtime bottleneck for large model spaces. We first analyze the original basis generation algorithm, which does not employ multi-threading parallel paradigm. Based on the analysis, we propose and empirically evaluate a new efficient scalable basis generation algorithm. We report a reduction of basis generation runtime by a factor of 42 on the Blue Waters supercomputer and by two orders of magnitude on our test-bed computer system with Broadwell CPUs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://sourceforge.net/projects/lsu3shell/ (In the time of writing this paper, latest updates were included in the LSU3develop repository branch).

  2. 2.

    Note that the simulation mode does not reflect the runtime of the MPI_Allreduce communication operation. However, such a reduction of a small array is generally very fast. For instance, on Blue Waters it takes up to few seconds even if majority of the nodes are involved [9].

References

  1. Dytrych, T., Launey, K., Draayer, J., Maris, P., Vary, J., Saule, E., Catalyurek, U., Sosonkina, M., Langr, D., Caprio, M.: Collective modes in light nuclei from first principles. Phys. Rev. Lett. 111(25), 252501 (2013). https://doi.org/10.1103/PhysRevLett.111.252501

    Article  Google Scholar 

  2. Dytrych, T., Maris, P., Launey, K., Draayer, J., Vary, J., Langr, D., Saule, E., Caprio, M., Catalyurek, U., Sosonkina, M.: Efficacy of the SU(3) scheme for ab initio large-scale calculations beyond the lightest nuclei. Comput. Phys. Commun. 207, 202–210 (2016). https://doi.org/10.1016/j.cpc.2016.06.006

    Article  Google Scholar 

  3. Elliott, J.P.: Collective motion in the nuclear shell model. I. Classification schemes for states of mixed configurations. Proc. Roy. Soc. Lond. A: Math. Physi Eng. Sci. 245(1240), 128–145 (1958). https://doi.org/10.1098/rspa.1958.0072

    Article  MathSciNet  MATH  Google Scholar 

  4. Elliott, J.P.: Collective motion in the nuclear shell model. II. The introduction of intrinsic wave-functions. Proc. Roy. Soc. Lond. A: Math. Phys. Eng. Sci. 245(1243), 562–581 (1958). https://doi.org/10.1098/rspa.1958.0101

    Article  MathSciNet  MATH  Google Scholar 

  5. Elliott, J.P., Harvey, M.: Collective motion in the nuclear shell model. III. The calculation of spectra. Proc. Roy. Soc. Lond. A: Math. Phys. Eng. Sci. 272(1351), 557–577 (1963). https://doi.org/10.1098/rspa.1963.0071

    Article  Google Scholar 

  6. Epelbaum, E., Krebs, H., Lee, D., Meißner, U.G.: Ab initio calculation of the Hoyle state. Phys. Rev. Lett. 106, 192501 (2011). https://doi.org/10.1103/PhysRevLett.106.192501

    Article  Google Scholar 

  7. Hagen, G., Papenbrock, T., Hjorth-Jensen, M.: Ab initio computation of the 17F proton halo state and resonances in A = 17 nuclei. Phys. Rev. Lett. 104, 182501 (2010). https://doi.org/10.1103/PhysRevLett.104.182501

    Article  Google Scholar 

  8. Kleinrock, L.: Computer Applications. Queueing Systems, vol. 2, 1st edn. Wiley-Interscience, Hoboken (1976)

    MATH  Google Scholar 

  9. Langr, D., Tvrdík, P., Šimeček, I., Dytrych, T.: Downsampling algorithms for large sparse matrices. Int. J. Parallel Prog. 43(5), 679–702 (2014). https://doi.org/10.1007/s10766-014-0315-8

    Article  Google Scholar 

  10. Maris, P., Sosonkina, M., Vary, J.P., Ng, E., Yang, C.: Scaling of ab-initio nuclear physics calculations on multicore computer architectures. Procedia Comput. Sci. 1(1), 97–106 (2010). https://doi.org/10.1016/j.procs.2010.04.012

    Article  Google Scholar 

  11. Navrátil, P., Vary, J.P., Barrett, B.R.: Properties of 12C in the ab initio nuclear shell model. Phys. Rev. Lett. 84, 5728–5731 (2000). https://doi.org/10.1103/PhysRevLett.84.5728

    Article  Google Scholar 

  12. Quaglioni, S., Navrátil, P.: Ab initio many-body calculations of n-3H, n-4He, p-3,4He, and n-10Be scattering. Phys. Rev. Lett. 101, 092501 (2008). https://doi.org/10.1103/PhysRevLett.101.092501

    Article  Google Scholar 

  13. Rosensteel, G., Rowe, D.J.: Nuclear Sp(3, R) model. Phys. Rev. Lett. 38, 10–14 (1977). https://doi.org/10.1103/PhysRevLett.38.10

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the Czech Science Foundation under Grant No. 16-16772S. This work is also part of the “Collaborative Research: Innovative ab initio symmetry-adapted no-core shell model for advancing fundamental physics and astrophysics” PRAC allocation support by NSF (award number ACI-1516338), and is part of the Blue Waters sustained-petascale computing project, which is supported by NSF (awards OCI-0725070 and ACI-1238993) and the state of Illinois (Blue Waters is a joint effort of the University of Illinois at Urbana-Champaign and its National Center for Supercomputing Applications). The authors acknowledge support from J.P. Draayer from the Louisiana State University, P. Tvrdík from the Czech Technical University in Prague, P. Vrchota from Výzkumný a zkušební letecký ústav, a.s., and M. Pajr from IHPCI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Langr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Langr, D., Dytrych, T., Oberhuber, T., Knapp, F. (2018). Efficient Parallel Generation of Many-Nucleon Basis for Large-Scale Ab Initio Nuclear Structure Calculations. In: Wyrzykowski, R., Dongarra, J., Deelman, E., Karczewski, K. (eds) Parallel Processing and Applied Mathematics. PPAM 2017. Lecture Notes in Computer Science(), vol 10778. Springer, Cham. https://doi.org/10.1007/978-3-319-78054-2_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78054-2_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78053-5

  • Online ISBN: 978-3-319-78054-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics