Nothing Special   »   [go: up one dir, main page]

Skip to main content

Parallel Assembly of ACA BEM Matrices on Xeon Phi Clusters

  • Conference paper
  • First Online:
Parallel Processing and Applied Mathematics (PPAM 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10777))

Abstract

The paper presents parallelization of the boundary element method in distributed memory of a cluster equipped with many-core based compute nodes. A method for efficient distribution of boundary element matrices among MPI processes based on the cyclic graph decompositions is described. In addition, we focus on the intra-node optimization of the code, which is necessary in order to fully utilize the many-core processors with wide SIMD registers. Numerical experiments carried out on a cluster consisting of the Intel Xeon Phi processors of the Knights Landing generation are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    November 2016 version.

References

  1. Bebendorf, M.: Approximation of boundary element matrices. Numer. Math. 86(4), 565–589 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bebendorf, M., Kriemann, R.: Fast parallel solution of boundary integral equations and related problems. Comp. Vis. Sci. 8(3–4), 121–135 (2005)

    Article  MathSciNet  Google Scholar 

  3. Bebendorf, M., Rjasanow, S.: Adaptive low-rank approximation of collocation matrices. Computing 70(1), 1–24 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Börm, S.: H2Lib (2017). http://www.h2lib.org/. Accessed 14 Feb 2017

  5. Dongarra, J.: Report on the Sunway TaihuLight system. Technical report. University of Tennessee, Oak Ridge National Laboratory, June 2016

    Google Scholar 

  6. Karypis, G., Kumar, V.: A fast and highly quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20(1), 359–392 (1999)

    Article  MATH  Google Scholar 

  7. Kravcenko, M., Merta, M., Zapletal, J.: Using discrete mathematics to optimize parallelism in boundary element method, Paper 2. In: Proceedings of the Fifth International Conference on Parallel, Distributed, Grid and Cloud Computing for Engineering. Civil-Comp Press, Stirlingshire (2017). https://doi.org/10.4203/ccp.111.2

  8. Kreutzer, M., Hager, G., Wellein, G., Fehske, H., Bishop, A.R.: A unified sparse matrix data format for efficient general sparse matrix-vector multiplication on modern processors with wide SIMD units. SIAM J. Sci. Comput. 36(5), C401–C423 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lukáš, D., Kovář, P., Kovářová, T., Merta, M.: A parallel fast boundary element method using cyclic graph decompositions. Numer. Algorithms 70(4), 807–824 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Merta, M., Zapletal, J.: BEM4I (2014). http://bem4i.it4i.cz. Accessed 17 Jan 2017

  11. Merta, M., Zapletal, J., Jaros, J.: Many core acceleration of the boundary element method. In: Kozubek, T., Blaheta, R., Šístek, J., Rozložník, M., Čermák, M. (eds.) HPCSE 2015. LNCS, vol. 9611, pp. 116–125. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40361-8_8

    Chapter  Google Scholar 

  12. Merta, M., Riha, L., Meca, O., Markopoulos, A., Brzobohaty, T., Kozubek, T., Vondrak, V.: Intel Xeon Phi acceleration of hybrid total FETI solver. Adv. Eng. Softw. 112, 124–135 (2017)

    Article  Google Scholar 

  13. Říha, L., Brzobohatý, T., Markopoulos, A., Kozubek, T., Meca, O., Schenk, O., Vanroose, W.: Efficient implementation of total FETI solver for graphic processing units using schur complement. In: Kozubek, T., Blaheta, R., Šístek, J., Rozložník, M., Čermák, M. (eds.) HPCSE 2015. LNCS, vol. 9611, pp. 85–100. Springer, Cham (2016)

    Chapter  Google Scholar 

  14. Rjasanow, S., Steinbach, O.: The Fast Solution of Boundary Integral Equations. Springer, Boston (2007). https://doi.org/10.1007/0-387-34042-4

    MATH  Google Scholar 

  15. Sauter, S.A., Schwab, C.: Boundary element methods. In: Sauter, S.A., Schwab, C. (eds.) Boundary Element Methods. Springer Series in Computational Mathematics, vol. 39, pp. 183–287. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-540-68093-2_4

    Chapter  Google Scholar 

  16. Steinbach, O.: Numerical Approximation Methods for Elliptic Boundary Value Problems: Finite and Boundary Elements. Texts in Applied Mathematics. Springer, New York (2008). https://doi.org/10.1007/978-0-387-68805-3

    Book  MATH  Google Scholar 

  17. Zapletal, J., Merta, M., Malý, L.: Boundary element quadrature schemes for multi-and many-core architectures. Comput. Math. Appl. 74(1), 157–173 (2017). 5th European Seminar on Computing ESCO 2016

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by The Ministry of Educations, Youth and Sports from the Large Infrastructures for Research, Experimental Development and Innovations project “IT4Innovations National Supercomputing Center – LM2015070”. The work was supported by The Ministry of Educations, Youth and Sports from the National Programme of Sustainability (NPU II) project “IT4Innovations excellence in science – LQ1602”. This work was partially supported by grant of SGS No. SP2017/165 “Efficient implementation of the boundary element method III”, VŠB – Technical University of Ostrava, Czech Republic. The authors thank HLRN for providing us with access to the HLRN Berlin Test and Development System.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Merta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kravcenko, M., Maly, L., Merta, M., Zapletal, J. (2018). Parallel Assembly of ACA BEM Matrices on Xeon Phi Clusters. In: Wyrzykowski, R., Dongarra, J., Deelman, E., Karczewski, K. (eds) Parallel Processing and Applied Mathematics. PPAM 2017. Lecture Notes in Computer Science(), vol 10777. Springer, Cham. https://doi.org/10.1007/978-3-319-78024-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78024-5_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78023-8

  • Online ISBN: 978-3-319-78024-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics