Nothing Special   »   [go: up one dir, main page]

Skip to main content

Obesity Cohorts Based on Comorbidities Extracted from Clinical Notes

  • Conference paper
  • First Online:
Trends and Advances in Information Systems and Technologies (WorldCIST'18 2018)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 746))

Included in the following conference series:

  • 4314 Accesses

Abstract

Clinical notes provide a comprehensive and overall impression of the patient’s health. However, the automatic extraction of information within these notes is challenging due to their narrative style. In this context, our goal was two-fold: first, extracting fourteen comorbidities related to obesity automatically from i2b2 Obesity Challenge data using the MetaMap tool; and second, identify patients’ cohorts applying sparse K-means algorithms on the extracted data. The results showed an average of 0.86 for recall, 0.94 for precision, and 0.89 for F-score. Also, three types of cohorts were found. The results showed that MetaMap can represent a good strategy for automatically extracting medical entities such as diseases or syndromes. Moreover, three types of cohorts could be identified based on the number of comorbidities and the percentage of patients suffering from them. These results show that hypertension, diabetes, CAD, CHF, HCL, OSA, asthma, and GERD were the most prevalent diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Shivade, C., Raghavan, P., Fosler-Lussier, E., Embi, P.J., Elhadad, N., Johnson, S.B., Lai, A.M.: A review of approaches to identifying patient phenotype cohorts using electronic health records. JAMIA 21, 221–230 (2014)

    Google Scholar 

  2. Zhang, P., Wang, F., Hu, J., Sorrentino, R.: Towards personalized medicine: leveraging patient similarity and drug similarity analytics. AMIA Summits Transl. Sci. Proc. 2014, 132–136 (2014)

    Google Scholar 

  3. Lyalina, S., Percha, B., LePendu, P., Iyer, S.V., Altman, R.B., Shah, N.H.: Identifying phenotypic signatures of neuropsychiatric disorders from electronic medical records. JAMIA 20, e297–e305 (2013)

    Google Scholar 

  4. Vavougios, G.D., Natsios, G., Pastaka, C., Zarogiannis, S.G., Gourgoulianis, K.I.: Phenotypes of comorbidity in OSAS patients: combining categorical principal component analysis with cluster analysis. J. Sleep Res. 25, 31–38 (2016)

    Article  Google Scholar 

  5. Serrano-Pariente, J., Rodrigo, G., Fiz, J.A., Crespo, A., Plaza, V., High Risk Asthma Research Group: Identification and characterization of near-fatal asthma phenotypes by cluster analysis. Allergy 70, 1139–1147 (2015)

    Article  Google Scholar 

  6. van der Esch, M., Knoop, J., van der Leeden, M., Roorda, L.D., Lems, W.F., Knol, D.L., Dekker, J.: Clinical phenotypes in patients with knee osteoarthritis: a study in the Amsterdam osteoarthritis cohort. Osteoarthr. Cartilage 23, 544–549 (2015)

    Article  Google Scholar 

  7. Ahmad, T., Pencina, M.J., Schulte, P.J., O’Brien, E., Whellan, D.J., Pina, I.L., Kitzman, D.W., Lee, K.L., O’Connor, C.M., Felker, G.M.: Clinical Implications of chronic heart failure phenotypes defined by cluster analysis. J. Am. Coll. Cardiol. 64, 1765–1774 (2014)

    Article  Google Scholar 

  8. Guh, D.P., Zhang, W., Bansback, N., Amarsi, Z., Birmingham, C.L., Anis, A.H.: The incidence of co-morbidities related to obesity and overweight: a systematic review and meta-analysis. BMC Publ. Health 9, 88 (2009)

    Article  Google Scholar 

  9. Sutherland, E.R., Goleva, E., King, T.S., Lehman, E., Stevens, A.D., Jackson, L.P., Stream, A.R., Fahy, J.V., Leung, D.Y.M., Asthma Clinical Research Network: Cluster analysis of obesity and asthma phenotypes. PLoS ONE 7, e36631 (2012)

    Article  Google Scholar 

  10. Laing, S.T., Smulevitz, B., Vatcheva, K.P., Rahbar, M.H., Reininger, B., McPherson, D.D., McCormick, J.B., Fisher-Hoch, S.P.: Subclinical atherosclerosis and obesity phenotypes among Mexican Americans. J. Am. Heart Assoc. 4, e001540 (2015)

    Article  Google Scholar 

  11. LaGrotte, C., Fernandez-Mendoza, J., Calhoun, S.L., Liao, D., Bixler, E.O., Vgontzas, A.N.: The relative association of obstructive sleep apnea, obesity, and excessive daytime sleepiness with incident depression: a longitudinal, population-based study. Int J Obes. 40, 1397 (2016)

    Article  Google Scholar 

  12. Uzuner, Ö.: Recognizing obesity and comorbidities in sparse data. JAMIA 16, 561–570 (2009)

    Google Scholar 

  13. Aronson, A.R., Lang, F.-M.: An overview of MetaMap: historical perspective and recent advances. JAMIA 17, 229–236 (2010)

    Google Scholar 

  14. Witten, D.M., Tibshirani, R.: A framework for feature selection in clustering. J. Am. Stat. Assoc. 105, 713–726 (2010)

    Article  MathSciNet  Google Scholar 

  15. Tibshirani, R., Walther, G., Hastie, T.: Estimating the number of clusters in a data set via the gap statistic. J. Roy. Stat. Soc. Ser. B 63, 411–423 (2001)

    Article  MathSciNet  Google Scholar 

  16. Willett, W.C., Dietz, W.H., Colditz, G.A.: Guidelines for healthy weight. N. Engl. J. Med. 341, 427–434 (1999)

    Article  Google Scholar 

  17. Peppard, P.E., Young, T., Barnet, J.H., Palta, M., Hagen, E., Hla, K.M.: Increased prevalence of sleep-disordered breathing in adults. Am. J. Epidemiol. 177, 1006–1014 (2013)

    Article  Google Scholar 

  18. Wolf, J., Lewicka, J., Narkiewicz, K.: Obstructive sleep apnea: An update on mechanisms and cardiovascular consequences. Nutr. Metab. Cardiovas. 17, 233–240 (2007)

    Article  Google Scholar 

  19. Somers, V.K., White, D.P., Amin, R., Abraham, W.T., Costa, F., Culebras, A., Daniels, S., Floras, J.S., Hunt, C.E., Olson, L.J., Pickering, T.G., Russell, R., Woo, M., Young, T.: Sleep apnea and cardiovascular disease - an American heart association/American college of cardiology foundation scientific statement from the American heart association council for high blood pressure research professional education committee, council on clinical cardiology, stroke council, and council on cardiovascular nursing. Circulation 118, 1080–1111 (2008)

    Article  Google Scholar 

  20. Poirier, P., Giles, T.D., Bray, G.A., Hong, Y., Stern, J.S., Pi-Sunyer, F.X., Eckel, R.H.: Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss. Arterioscler. Thromb. Vasc. Biol. 26, 968–976 (2006)

    Article  Google Scholar 

  21. Kramer, C.K., Zinman, B., Retnakaran, R.: Are metabolically healthy overweight and obesity benign conditions? A systematic review and meta-analysis. Ann. Intern. Med. 159, 758–769 (2013)

    Article  Google Scholar 

  22. Dixon, J.B., Dixon, M.E., O’Brien, P.E.: Depression in association with severe obesity - changes with weight loss. Arch. Intern. Med. 163, 2058–2065 (2003)

    Article  Google Scholar 

  23. Roberts, R.E., Deleger, S., Strawbridge, W.J., Kaplan, G.A.: Prospective association between obesity and depression: evidence from the Alameda county study. Int. J. Obes. 27, 514–521 (2003)

    Article  Google Scholar 

  24. Luppino, F.S., de Wit, L.M., Bouvy, P.F., Stijnen, T., Cuijpers, P., Penninx, B.W., Zitman, F.G.: Overweight, obesity, and depression: a systematic review and meta-analysis of longitudinal studies. Arch. Gen. Psychiatry 67, 220–229 (2010)

    Article  Google Scholar 

  25. Rocha, A., Rocha, B.: Adopting nursing health record standards. Inf. Health Soc. Care 39, 1–14 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruth Reátegui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Reátegui, R., Ratté, S., Bautista-Valarezo, E., Duque, V. (2018). Obesity Cohorts Based on Comorbidities Extracted from Clinical Notes. In: Rocha, Á., Adeli, H., Reis, L., Costanzo, S. (eds) Trends and Advances in Information Systems and Technologies. WorldCIST'18 2018. Advances in Intelligent Systems and Computing, vol 746. Springer, Cham. https://doi.org/10.1007/978-3-319-77712-2_107

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77712-2_107

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77711-5

  • Online ISBN: 978-3-319-77712-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics