Nothing Special   »   [go: up one dir, main page]

Skip to main content

Automatic Segmentation of Neurons in 3D Samples of Human Brain Cortex

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10784))

Abstract

Quantitative analysis of brain cytoarchitecture requires effective and efficient segmentation of the raw images. This task is highly demanding from an algorithmic point of view, because of the inherent variations of contrast and intensity in the different areas of the specimen, and of the very large size of the datasets to be processed. Here, we report a machine vision approach based on Convolutional Neural Networks (CNN) for the near real-time segmentation of neurons in three-dimensional images with high specificity and sensitivity. This instrument, together with high-throughput sample preparation and imaging, can lay the basis for a quantitative revolution in neuroanatomical studies.

G. Mazzamuto and I. Costantini—Contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Spalteholz, W.: Über das durchsichtigmachen von menschlichen und tierischen präpareten und seine theoretischen bedingungen, n.p. (1914)

    Google Scholar 

  2. Costantini, I., Ghobril, J.P., Di Giovanna, A.P., Mascaro, A.L.A., Silvestri, L., Mullenbroich, M.C., Onofri, L., Conti, V., Vanzi, F., Sacconi, L., Guerrini, R., Markram, H., Iannello, G., Pavone, F.S.: A versatile clearing agent for multi-modal brain imaging. Sci. Rep. 5, 9808 (2015)

    Article  Google Scholar 

  3. Silvestri, L., Costantini, I., Sacconi, L., Pavone, F.S.: Clearing of fixed tissue: a review from a microscopist’s perspective. J. Biomed. Opt. 21, 081205 (2016)

    Article  Google Scholar 

  4. Dodt, H.U., Leischner, U., Schierloh, A., Jahrling, N., Mauch, C.P., Deininger, K., Deussing, J.M., Eder, M., Zieglgansberger, W., Becker, K.: Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain. Nature Meth. 4, 331–336 (2007)

    Article  Google Scholar 

  5. Silvestri, L., Bria, A., Sacconi, L., Iannello, G., Pavone, F.S.: Confocal light sheet microscopy: micron-scale neuroanatomy of the entire mouse brain. Opt. Express 20, 20582–20598 (2012)

    Article  Google Scholar 

  6. Garcia-Garcia, A., Orts-Escolano, S., Oprea, S., Villena-Martinez, V., Garcia-Rodriguez, J.: A Review on Deep Learning Techniques Applied to Semantic Segmentation. arXiv preprint arXiv:1704.06857 (2017)

  7. Alegro, M., Theofilas, P., Nguy, A., Castruita, P.A., Seeley, W., Heinsen, H., Ushizima, D.M., Grinberg, L.T.: Automating cell detection and classification in human brain fluorescent microscopy images using dictionary learning and sparse coding. J. Neurosci. Meth. 282, 20–33 (2017)

    Article  Google Scholar 

  8. Roffilli, M.: Advanced machine learning techniques for digital mammography. Technical report, Department of Computer Science University of Bologna, Italy (2006)

    Google Scholar 

  9. Lindeberg, T.: Detecting salient blob-like image structures and their scales with a scale-space primal sketch - a method for focus-of-attention. Int. J. Comput. Vision 11, 283–318 (1993)

    Article  Google Scholar 

  10. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp. 1097–1105 (2012)

    Google Scholar 

  11. Maple, C.: Geometric design and space planning using the marching squares and marching cube algorithms. In: Proceedings of 2003 International Conference on Geometric Modeling and Graphics, 2003, pp. 90–95. IEEE (2003)

    Google Scholar 

  12. Bioretics srl: The AliquisTM framework. http://www.bioretics.com/aliquis. Accessed on 4 Nov 2017

  13. Frasconi, P., Silvestri, L., Soda, P., Cortini, R., Pavone, F.S., Iannello, G.: Large-scale automated identification of mouse brain cells in confocal light sheet microscopy images. Bioinformatics 30, i587–i593 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Prof. Katrin Amunts from the Institute of Neuroscience and Medicine, Research Centre Jülich, Germany, for providing human brain samples used in this study. This project received funding from the European Union’s H2020 research and innovation programme under grant agreements No. 720270 (Human Brain Project) and 654148 (Laserlab-Europe), and from the EU programme H2020 EXCELLENT SCIENCE - European Research Council (ERC) under grant agreement n. 692943 (BrainBIT). The project is also supported by the Italian Ministry for Education, University, and Research in the framework of the Flagship Project NanoMAX and of Eurobioimaging Italian Nodes (ESFRI research infrastructure), and by “Ente Cassa di Risparmio di Firenze” (private foundation).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Mazzamuto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mazzamuto, G., Costantini, I., Neri, M., Roffilli, M., Silvestri, L., Pavone, F.S. (2018). Automatic Segmentation of Neurons in 3D Samples of Human Brain Cortex. In: Sim, K., Kaufmann, P. (eds) Applications of Evolutionary Computation. EvoApplications 2018. Lecture Notes in Computer Science(), vol 10784. Springer, Cham. https://doi.org/10.1007/978-3-319-77538-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77538-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77537-1

  • Online ISBN: 978-3-319-77538-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics