Abstract
Quantitative analysis of brain cytoarchitecture requires effective and efficient segmentation of the raw images. This task is highly demanding from an algorithmic point of view, because of the inherent variations of contrast and intensity in the different areas of the specimen, and of the very large size of the datasets to be processed. Here, we report a machine vision approach based on Convolutional Neural Networks (CNN) for the near real-time segmentation of neurons in three-dimensional images with high specificity and sensitivity. This instrument, together with high-throughput sample preparation and imaging, can lay the basis for a quantitative revolution in neuroanatomical studies.
G. Mazzamuto and I. Costantini—Contributed equally to this work.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Spalteholz, W.: Über das durchsichtigmachen von menschlichen und tierischen präpareten und seine theoretischen bedingungen, n.p. (1914)
Costantini, I., Ghobril, J.P., Di Giovanna, A.P., Mascaro, A.L.A., Silvestri, L., Mullenbroich, M.C., Onofri, L., Conti, V., Vanzi, F., Sacconi, L., Guerrini, R., Markram, H., Iannello, G., Pavone, F.S.: A versatile clearing agent for multi-modal brain imaging. Sci. Rep. 5, 9808 (2015)
Silvestri, L., Costantini, I., Sacconi, L., Pavone, F.S.: Clearing of fixed tissue: a review from a microscopist’s perspective. J. Biomed. Opt. 21, 081205 (2016)
Dodt, H.U., Leischner, U., Schierloh, A., Jahrling, N., Mauch, C.P., Deininger, K., Deussing, J.M., Eder, M., Zieglgansberger, W., Becker, K.: Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain. Nature Meth. 4, 331–336 (2007)
Silvestri, L., Bria, A., Sacconi, L., Iannello, G., Pavone, F.S.: Confocal light sheet microscopy: micron-scale neuroanatomy of the entire mouse brain. Opt. Express 20, 20582–20598 (2012)
Garcia-Garcia, A., Orts-Escolano, S., Oprea, S., Villena-Martinez, V., Garcia-Rodriguez, J.: A Review on Deep Learning Techniques Applied to Semantic Segmentation. arXiv preprint arXiv:1704.06857 (2017)
Alegro, M., Theofilas, P., Nguy, A., Castruita, P.A., Seeley, W., Heinsen, H., Ushizima, D.M., Grinberg, L.T.: Automating cell detection and classification in human brain fluorescent microscopy images using dictionary learning and sparse coding. J. Neurosci. Meth. 282, 20–33 (2017)
Roffilli, M.: Advanced machine learning techniques for digital mammography. Technical report, Department of Computer Science University of Bologna, Italy (2006)
Lindeberg, T.: Detecting salient blob-like image structures and their scales with a scale-space primal sketch - a method for focus-of-attention. Int. J. Comput. Vision 11, 283–318 (1993)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp. 1097–1105 (2012)
Maple, C.: Geometric design and space planning using the marching squares and marching cube algorithms. In: Proceedings of 2003 International Conference on Geometric Modeling and Graphics, 2003, pp. 90–95. IEEE (2003)
Bioretics srl: The AliquisTM framework. http://www.bioretics.com/aliquis. Accessed on 4 Nov 2017
Frasconi, P., Silvestri, L., Soda, P., Cortini, R., Pavone, F.S., Iannello, G.: Large-scale automated identification of mouse brain cells in confocal light sheet microscopy images. Bioinformatics 30, i587–i593 (2014)
Acknowledgements
We thank Prof. Katrin Amunts from the Institute of Neuroscience and Medicine, Research Centre Jülich, Germany, for providing human brain samples used in this study. This project received funding from the European Union’s H2020 research and innovation programme under grant agreements No. 720270 (Human Brain Project) and 654148 (Laserlab-Europe), and from the EU programme H2020 EXCELLENT SCIENCE - European Research Council (ERC) under grant agreement n. 692943 (BrainBIT). The project is also supported by the Italian Ministry for Education, University, and Research in the framework of the Flagship Project NanoMAX and of Eurobioimaging Italian Nodes (ESFRI research infrastructure), and by “Ente Cassa di Risparmio di Firenze” (private foundation).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Mazzamuto, G., Costantini, I., Neri, M., Roffilli, M., Silvestri, L., Pavone, F.S. (2018). Automatic Segmentation of Neurons in 3D Samples of Human Brain Cortex. In: Sim, K., Kaufmann, P. (eds) Applications of Evolutionary Computation. EvoApplications 2018. Lecture Notes in Computer Science(), vol 10784. Springer, Cham. https://doi.org/10.1007/978-3-319-77538-8_6
Download citation
DOI: https://doi.org/10.1007/978-3-319-77538-8_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-77537-1
Online ISBN: 978-3-319-77538-8
eBook Packages: Computer ScienceComputer Science (R0)