Abstract
We study the design of schedules for multi-commodity multicast. In this problem, we are given an undirected graph G and a collection of source-destination pairs, and the goal is to schedule a minimum-length sequence of matchings that connects every source with its respective destination. The primary communication constraint of the multi-commodity multicast model is the number of connections that a given node can make, not link bandwidth. Multi-commodity multicast and its special cases, (single-commodity) broadcast and multicast, are all NP-complete. Multi-commodity multicast is closely related to the problem of finding a subgraph of optimal poise, where the poise is defined as the sum of the maximum degree and the maximum distance between any source-destination pair. We show that for any instance of the multicast problem, the minimum poise subgraph can be approximated to within a factor of \(O(\log k)\) with respect to the value of a natural LP relaxation in a graph with k source-destination pairs. This is the first upper bound on the integrality gap of the natural LP; all previous algorithms yielded approximations with respect to the integer optimum. Using this integrality gap upper bound and shortest-path separators in planar graphs, we obtain our main result: an \(O(\log ^3 k \frac{\log n}{\log \log n})\)-approximation for multi-commodity multicast for planar graphs which improves on the \(2^{\widetilde{O}(\sqrt{\log n})}\)-approximation for general graphs.
We also study the minimum-time radio gossip problem in planar graphs where a message from each node must be transmitted to all other nodes under a model where nodes can broadcast to all neighbors and only nodes with a single broadcasting neighbor get a non-interfered message. In earlier work Iglesias et al. (FSTTCS 2015), we showed a strong \(\varOmega (n^{\frac{1}{2} - \epsilon })\)-hardness of approximation for computing a minimum gossip schedule in general graphs. Using our techniques for the telephone model, we give an \(O(\log ^2 n)\)-approximation for radio gossip in planar graphs breaking this barrier. Moreover, this is the first bound for radio gossip given that doesn’t rely on the maximum degree of the graph.
This material is based upon research supported in part by the U. S. Office of Naval Research under award number N00014-12-1-1001 and National Science Foundation under award number CCF-1527032.
J. Iglesias—Now at Waymo. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. 2013170941.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Even though the number of path variables is exponential, it is not hard to convert this to a compact formulation on the edge variables that can be solved in polynomial time. See e.g., [30].
References
Abraham, I., Gavoille, C.: Object location using path separators. In: PODC, pp. 188–197 (2006)
Alon, N., Bar-Noy, A., Linial, N., Peleg, D.: A lower bound for radio broadcast. J. Comput. Syst. Sci. 43, 290–298 (1991)
Baker, B., Shostak, R.: Gossips and telephones. Discret. Math. 2(3), 191–193 (1972)
Bar-Noy, A., Guha, S., Naor, J., Schieber, B.: Message multicasting in heterogeneous networks. SIAM J. Comput. 30(2), 347–358 (2000)
Cherkassky, B.: Mnogopolyusnye dvukhproduktovye zadachi [Russian: Multiterminal two commodity problems]. Issledovaniya po Diskretnoi Optimizatsii [Russian: Studies in discrete optimization], pp. 261–289 (1976)
Elkin, M., Kortsarz, G.: A combinatorial logarithmic approximation algorithm for the directed telephone broadcast problem. SIAM J. Comput. 35(3), 672–689 (2005)
Elkin, M., Kortsarz, G.: Polylogarithmic additive inapproximability of the radio broadcast problem. SIAM J. Discret. Math. 19(4), 881–899 (2005)
Elkin, M., Kortsarz, G.: An approximation algorithm for the directed telephone multicast problem. Algorithmica 45(4), 569–583 (2006)
Elkin, M., Kortsarz, G.: Sublogarithmic approximation for telephone multicast. J. Comput. Syst. Sci. 72(4), 648–659 (2006)
Feige, U., Peleg, D., Raghavan, P., Upfal, E.: Randomized broadcast in networks. Random Struct. Algorithms 1(4), 447–460 (1990)
Fountoulakis, N., Panagiotou, K., Sauerwald, T.: Ultra-fast rumor spreading in social networks. In: SODA 2012, pp. 1642–1660. SIAM (2012)
Frank, A.: Connections in Combinatorial Optimization. Oxford Lecture Series in Mathematics and Its Applications. OUP Oxford, Oxford (2011)
Gąsieniec, L.: On efficient gossiping in radio networks. In: Kutten, S., Žerovnik, J. (eds.) SIROCCO 2009. LNCS, vol. 5869, pp. 2–14. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11476-2_2
Gasieniec, L., Peleg, D., Xin, Q.: Faster communication in known topology radio networks. Distrib. Comput. 19(4), 289–300 (2007)
Giakkoupis, G.: Tight bounds for rumor spreading in graphs of a given conductance. In: STACS 2011, vol. 9, pp. 57–68 (2011)
Grigni, M., Peleg, D.: Tight bounds on minimum broadcast networks. SIAM J. Discret. Math. 4(2), 207–222 (1991)
Hajnal, A., Milner, E.C., Szemerédi, E.: A cure for the telephone disease. Canad. Math. Bull 15(3), 447–450 (1972)
Iglesias, J., Rajaraman, R., Ravi, R., Sundaram, R.: Rumors across radio, wireless, telephone. In: FSTTCS, pp. 517–528 (2015)
Iglesias, J., Rajaraman, R., Ravi, R., Sundaram, R.: Plane gossip: Approximating rumor spread in planar graphs. CoRR, abs/1612.01492 (2016)
Karp, R., Schindelhauer, C., Shenker, S., Vocking, B.: Randomized rumor spreading. In: FOCS 2000, Washington, DC, USA, pp. 565–574. IEEE (2000)
Karp, R.M., Leighton, F.T., Rivest, R.L., Thompson, C.D., Vazirani, U.V., Vazirani, V.V.: Global wire routing in two-dimensional arrays. Algorithmica 2(1), 113–129 (1987)
Kortsarz, G., Peleg, D.: Approximation algorithms for minimum-time broadcast. SIAM J. Discret. Math. 8(3), 401–427 (1995)
Kowalski, D.R., Pelc, A.: Optimal deterministic broadcasting in known topology radio networks. Distrib. Comput. 19(3), 185–195 (2007)
Lipton, R.J., Tarjan, R.E.: A separator theorem for planar graphs. SIAM J. Appl. Math. 36(2), 177–189 (1979)
Lovász, L.: On some connectivity properties of Eulerian graphs. Acta Math. Acad. Sci. Hung. 28, 129–138 (1976)
Manne, F., Wang, S., Xin, Q.: Faster radio broadcast in planar graphs. In: WONS, pp. 9–13 (2008)
Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge International Series on Parallel Computation. Cambridge University Press, Cambridge (1995)
Nikzad, A., Ravi, R.: Sending secrets swiftly: approximation algorithms for generalized multicast problems. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8573, pp. 568–607. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43951-7_48
Proskurowski, A.: Minimum broadcast trees. IEEE Trans. Comput. 30(5), 363–366 (1981)
Ravi, R.: Rapid rumor ramification: approximating the minimum broadcast time. In: FOCS, pp. 202–213. IEEE (1994)
Ravi, R.: Matching based augmentations for approximating connectivity problems. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 13–24. Springer, Heidelberg (2006). https://doi.org/10.1007/11682462_4
Thorup, M.: Compact oracles for reachability and approximate distances in planar digraphs. J. ACM 51(6), 993–1024 (2004)
Tijdeman, R.: On a telephone problem. Nieuw Archief voor Wiskunde 3(19), 188–192 (1971)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Iglesias, J., Rajaraman, R., Ravi, R., Sundaram, R. (2018). Plane Gossip: Approximating Rumor Spread in Planar Graphs. In: Bender, M., Farach-Colton, M., Mosteiro, M. (eds) LATIN 2018: Theoretical Informatics. LATIN 2018. Lecture Notes in Computer Science(), vol 10807. Springer, Cham. https://doi.org/10.1007/978-3-319-77404-6_45
Download citation
DOI: https://doi.org/10.1007/978-3-319-77404-6_45
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-77403-9
Online ISBN: 978-3-319-77404-6
eBook Packages: Computer ScienceComputer Science (R0)