Nothing Special   »   [go: up one dir, main page]

Skip to main content

Transversals of Longest Cycles in Chordal and Bounded Tree-Width Graphs

  • Conference paper
  • First Online:
LATIN 2018: Theoretical Informatics (LATIN 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10807))

Included in the following conference series:

Abstract

Let \(\mathrm {lct}(G)\) be the minimum size of a set of vertices that intersects every longest cycle of a 2-connected graph G. Let \(\mathrm {tw}(G)\) be the tree-width of G and \(\omega (G)\) be the size of a maximum clique in G. We show that \(\mathrm {lct}(G)\le \mathrm {tw}(G)-1\) for every G, and that \(\mathrm {lct}(G)\le \max \{1, {\omega (G){-}3}\}\) if G is chordal. Those results imply as corollaries that all longest cycles intersect in 2-connected series-parallel graphs and in 3-trees. We also strengthen the latter result and show that all longest cycles intersect in 2-connected graphs of tree-width at most 3, also known as partial 3-trees.

J. Gutiérrez—Research supported by FAPESP (Proc. 2015/08538-5).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Grötschel, M.: On intersections of longest cycles. In: Bollobás, B. (ed.) Graph Theory and Combinatorics, pp. 171–189 (1984)

    Google Scholar 

  2. Thomassen, C.: Hypohamiltonian graphs and digraphs. In: Alavi, Y., Lick, D.R. (eds.) Theory and Applications of Graphs. LNM, vol. 642, pp. 557–571. Springer, Heidelberg (1978). https://doi.org/10.1007/BFb0070410

    Chapter  Google Scholar 

  3. Rautenbach, D., Sereni, J.S.: Transversals of longest paths and cycles. SIAM J. Discret. Math. 28(1), 335–341 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Jobson, A., Kzdy, A., Lehel, J., White, S.: Detour trees. Discret. Appl. Math. 206, 73–80 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. van Aardt, S.A., Burger, A.P., Dunbar, J.E., Frick, M., Llano, B., Thomassen, C., Zuazua, R.: Destroying longest cycles in graphs and digraphs. Discret. Appl. Math. 186(Suppl. C), 251–259 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fernandes, C., Gutiérrez, J.: Hitting all longest cycles in a graph. In: Anais do XXXVII congresso da sociedade brasileira de computação, pp. 87–90 (2017)

    Google Scholar 

  7. Balister, P., Győri, E., Lehel, J., Schelp, R.: Longest paths in circular arc graphs. Comb. Probab. Comput. 13(3), 311–317 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cerioli, M., Lima, P.: Intersection of longest paths in graph classes. Electron. Notes Discret. Math. 55, 139–142 (2016)

    Article  MATH  Google Scholar 

  9. Chen, F.: Nonempty intersection of longest paths in a graph with a small matching number. Czechoslov. Math. J. 65(140), 545–553 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, G., Ehrenmüller, J., Fernandes, C., Heise, C., Shan, S., Yang, P., Yates, A.: Nonempty intersection of longest paths in seriesparallel graphs. Discret. Math. 340(3), 287–304 (2017)

    Article  MATH  Google Scholar 

  11. de Rezende, S., Fernandes, C., Martin, D., Wakabayashi, Y.: Intersecting longest paths. Discret. Math. 313, 1401–1408 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Golan, G., Shan, S.: Nonempty intersection of longest paths in \(2{K_2}\)-free graphs. https://arxiv.org/abs/1611.05967 (2016)

  13. Klavžar, S., Petkovšek, M.: Graphs with nonempty intersection of longest paths. Ars Comb. 29, 43–52 (1990)

    MathSciNet  MATH  Google Scholar 

  14. Zamfirescu, T.: On longest paths and circuits in graphs. Math. Scand. 38(2), 211–239 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cerioli, M.R., Fernandes, C.G., Gómez, R., Gutiérrez, J., Lima, P.T.: Transversals of longest paths. Electron. Notes Discret. Math. 62(Suppl. C), 135–140 (2017). IX Latin and American Algorithms, Graphs and Optimization, LAGOS 2017

    Article  Google Scholar 

  16. Cerioli, M.R., Fernandes, C.G., Gómez, R., Gutiérrez, J., Lima, P.T.: Transversals of longest paths (2017). https://arxiv.org/abs/1712.07086

  17. Chen, G., Faudree, R.J., Gould, R.J.: Intersections of longest cycles in k-connected graphs. J. Comb. Theory Ser. B 72(1), 143–149 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hippchen, T.: Intersections of longest paths and cycles. Ph.D. thesis, Georgia State University (2008)

    Google Scholar 

  19. Jendrol, S., Skupień, Z.: Exact numbers of longest cycles with empty intersection. Eur. J. Comb. 18(5), 575–578 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  20. Stewart, I.A., Thompson, B.: On the intersections of longest cycles in a graph. Exp. Math. 4(1), 41–48 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  21. Diestel, R.: Graph Theory. GTM, vol. 173, 4th edn. Springer, Heidelberg (2017)

    Book  MATH  Google Scholar 

  22. Bodlaender, H.: A partial \(k\)-arboretum of graphs with bounded treewidth. Theor. Comput. Sci. 209(1), 1–45 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gavril, F.: The intersection graphs of subtrees in trees are exactly the chordal graphs. J. Comb. Theory Ser. B 16(1), 47–56 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  24. Heinz, M.: Tree-decomposition: graph minor theory and algorithmic implications. Master’s thesis, Technischen Universität Wien (2013)

    Google Scholar 

  25. Fomin, F., Thilikos, D.: New upper bounds on the decomposability of planar graphs. J. Graph Theory 51(1), 53–81 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Alon, N., Seymour, P., Thomas, R.: A separator theorem for nonplanar graphs. J. Am. Math. Soc. 3, 801–808 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  27. Shabbir, A., Zamfirescu, C., Zamfirescu, T.: Intersecting longest paths and longest cycles: a survey. Electron. J. Graph Theory Appl. 1, 56–76 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Gutiérrez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gutiérrez, J. (2018). Transversals of Longest Cycles in Chordal and Bounded Tree-Width Graphs. In: Bender, M., Farach-Colton, M., Mosteiro, M. (eds) LATIN 2018: Theoretical Informatics. LATIN 2018. Lecture Notes in Computer Science(), vol 10807. Springer, Cham. https://doi.org/10.1007/978-3-319-77404-6_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77404-6_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77403-9

  • Online ISBN: 978-3-319-77404-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics