Abstract
We initiate the study of a fundamental combinatorial problem: Given a capacitated graph \(G=(V,E)\), find a shortest walk (“route”) from a source \(s\in V\) to a destination \(t\in V\) that includes all vertices specified by a set \(\mathscr {W}\subseteq V\): the waypoints. This waypoint routing problem finds immediate applications in the context of modern networked distributed systems. Our main contribution is an exact polynomial-time algorithm for graphs of bounded treewidth. We also show that if the number of waypoints is logarithmically bounded, exact polynomial-time algorithms exist even for general graphs. Our two algorithms provide an almost complete characterization of what can be solved exactly in polynomial-time: we show that more general problems (e.g., on grid graphs of maximum degree 3, with slightly more waypoints) are computationally intractable.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
A preliminary full version is provided at [3].
References
Akiyama, T., Nishizeki, T., Saito, N.: NP-completeness of the Hamiltonian cycle problem for bipartite graphs. J. Inf. Process. 3(2), 73–76 (1980)
Amiri, S.A., Foerster, K.-T., Jacob, R., Schmid, S.: Charting the complexity landscape of waypoint routing. arXiv preprint arXiv:1705.00055 (2017)
Amiri, S.A., Foerster, K.-T., Schmid, S.: Walking through waypoints. arXiv preprint arXiv:1708.09827 (2017)
Akhoondian Amiri, S., Golshani, A., Kreutzer, S., Siebertz, S.: Vertex disjoint paths in upward planar graphs. In: Hirsch, E.A., Kuznetsov, S.O., Pin, J.É., Vereshchagin, N.K. (eds.) CSR 2014. LNCS, vol. 8476, pp. 52–64. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06686-8_5
Arkin, E.M., Fekete, S.P., Islam, K., Meijer, H., Mitchell, J.S.B., Rodríguez, Y.N., Polishchuk, V., Rappaport, D., Xiao, H.: Not being (super) thin or solid is hard: a study of grid hamiltonicity. Comput. Geom. 42(6–7), 582–605 (2009)
Arnborg, S., Proskurowski, A.: Linear time algorithms for NP-hard problems restricted to partial k-trees. Discrete Appl. Math. 23(1), 11–24 (1989)
Björklund, A., Husfeld, T., Taslaman, N.: Shortest cycle through specified elements. In: Proceedings of SODA (2012)
Björklund, A., Husfeldt, T.: Shortest two disjoint paths in polynomial time. In: Proceedings of ICALP (2014)
Bodlaender, H.L., Drange, P.G., Dregi, M.S., Fomin, F.V., Lokshtanov, D., Pilipczuk, M.: An approximation algorithm for treewidth. In: Proceedings of FOCS (2013)
Bodlaender, H.L.: Dynamic programming on graphs with bounded treewidth. In: Lepistö, T., Salomaa, A. (eds.) ICALP 1988. LNCS, vol. 317, pp. 105–118. Springer, Heidelberg (1988). https://doi.org/10.1007/3-540-19488-6_110
Bodlaender, H.L.: A tourist guide through treewidth. Acta Cybern. 11(1–2), 1–21 (1993)
Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM J. Comput. 25(6), 1305–1317 (1996)
Bodlaender, H.L., Cygan, M., Kratsch, S., Nederlof, J.: Deterministic single exponential time algorithms for connectivity problems parameterized by treewidth. Inf. Comput. 243, 86–111 (2015)
Borradaile, G., Demaine, E.D., Tazari, S.: Polynomial-time approximation schemes for subset-connectivity problems in bounded-genus graphs. Algorithmica 68(2), 287–311 (2014)
Buro, M.: Simple Amazons endgames and their connection to Hamilton circuits in cubic subgrid graphs. In: Marsland, T., Frank, I. (eds.) CG 2000. LNCS, vol. 2063, pp. 250–261. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45579-5_17
Chekuri, C., Khanna, S., Shepherd, F.B.: A note on multiflows and treewidth. Algorithmica 54(3), 400–412 (2009)
Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21275-3
Cygan, M., Marx, D., Pilipczuk, M., Pilipczuk, M.: The planar directed k-vertex-disjoint paths problem is fixed-parameter tractable. In: Proceedings of FOCS (2013)
de Verdière, E.C., Schrijver, A.: Shortest vertex-disjoint two-face paths in planar graphs. ACM Trans. Algorithms (TALG) 7(2), 19 (2011)
Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, New York (1999). https://doi.org/10.1007/978-1-4612-0515-9
Eilam-Tzoreff, T.: The disjoint shortest paths problem. Discrete Appl. Math. 85(2), 113–138 (1998)
Ene, A., Mnich, M., Pilipczuk, M., Risteski, A.: On routing disjoint paths in bounded treewidth graphs. In: Proceedings of SWAT (2016)
ETSI: Network functions virtualisation. White Paper, October 2013
ETSI: Network functions virtualisation (NFV); use cases. http://www.etsi.org/deliver/etsi_gs/NFV/001_099/001/01.01.01_60/gs_NFV001v010101p.pdf (2014)
Even, G., Medina, M., Patt-Shamir, B.: On-line path computation and function placement in SDNs. In: Bonakdarpour, B., Petit, F. (eds.) SSS 2016. LNCS, vol. 10083, pp. 131–147. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49259-9_11
Even, G., Rost, M., Schmid, S.: An approximation algorithm for path computation and function placement in SDNs. In: Suomela, J. (ed.) SIROCCO 2016. LNCS, vol. 9988, pp. 374–390. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48314-6_24
Feamster, N., Rexford, J., Zegura, E.: The road to SDN. Queue 11(12), 1–21 (2013)
Fellows, M., Fomin, F.V., Lokshtanov, D., Rosamond, F., Saurabh, S., Szeider, S., Thomassen, C.: On the complexity of some colorful problems parameterized by treewidth. In: Dress, A., Xu, Y., Zhu, B. (eds.) COCOA 2007. LNCS, vol. 4616, pp. 366–377. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73556-4_38
Fenner, T., Lachish, O., Popa, A.: Min-sum 2-paths problems. Theor. Comp. Sys. 58(1), 94–110 (2016)
Fleischner, H., Woeginger, G.J.: Detecting cycles through three fixed vertices in a graph. Inf. Process. Lett. 42(1), 29–33 (1992)
Foerster, K.-T., Parham, M., Schmid, S.: A walk in the clouds: routing through VNFs on bidirected networks. In: Proceedings of ALGOCLOUD (2017)
Fortune, S., Hopcroft, J.E., Wyllie, J.: The directed subgraph homeomorphism problem. Theor. Comput. Sci. 10, 111–121 (1980)
Itai, A., Perl, Y., Shiloach, Y.: The complexity of finding maximum disjoint paths with length constraints. Networks 12(3), 277–286 (1982)
Karp, R.M.: On the computational complexity of combinatorial problems. Networks 5(1), 45–68 (1975)
Kawarabayashi, K.: An improved algorithm for finding cycles through elements. In: Lodi, A., Panconesi, A., Rinaldi, G. (eds.) IPCO 2008. LNCS, vol. 5035, pp. 374–384. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68891-4_26
Khuller, S., Mitchell, S.G., Vazirani, V.V.: Processor efficient parallel algorithms for the two disjoint paths problem and for finding a kuratowski homeomorph. SIAM J. Comput. 21(3), 486–506 (1992)
Khuller, S., Schieber, B.: Efficient parallel algorithms for testing k-connectivity and finding disjoint s-t paths in graphs. SIAM J. Comput. 20(2), 352–375 (1991)
Klein, P.N., Marx, D.: A subexponential parameterized algorithm for subset TSP on planar graphs. In: Proceedings of SODA (2014)
Kloks, T. (ed.): Treewidth, Computations and Approximations. LNCS, vol. 842. Springer, Heidelberg (1994). https://doi.org/10.1007/BFb0045375
Kobayashi, Y., Sommer, C.: On shortest disjoint paths in planar graphs. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 293–302. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10631-6_31
Schrijver, A., Lovasz, L.: Paths, Flows, and VLSI-Layout. Springer-Verlag New York, Inc., Secaucus (1990). Korte, B., Promel, H.J., Graham, R.L. (eds.). ISBN 0387526854
Marx, D.: List edge multicoloring in graphs with few cycles. Inf. Process. Lett. 89(2), 85–90 (2004)
Nishizeki, T., Vygen, J., Zhou, X.: The edge-disjoint paths problem is NP-complete for series-parallel graphs. Discrete Appl. Math. 115, 177–186 (2001)
Ogier, R.G., Rutenburg, V., Shacham, N.: Distributed algorithms for computing shortest pairs of disjoint paths. IEEE Trans. Inf. Theory 39(2), 443–455 (1993)
Ohtsuki, T.: The two disjoint path problem and wire routing design. In: Saito, N., Nishizeki, T. (eds.) Graph Theory and Algorithms. LNCS, vol. 108, pp. 207–216. Springer, Heidelberg (1981). https://doi.org/10.1007/3-540-10704-5_18
Papadimitriou, C.H., Vazirani, U.V.: On two geometric problems related to the traveling salesman problem. J. Algorithms 5(2), 231–246 (1984)
Perković, L., Reed, B.A.: An improved algorithm for finding tree decompositions of small width. Int. J. Found. Comput. Sci. 11(3), 365–371 (2000)
Robertson, N., Seymour, P.D.: Graph minors .XIII. The disjoint paths problem. J. Comb. Theory Ser. B 63(1), 65–110 (1995)
Rost, M., Schmid, S.: Service chain and virtual network embeddings: approximations using randomized rounding. arXiv preprint arXiv:1604.02180 (2016)
Saltzer, J.H., Reed, D.P., Clark, D.D.: End-to-end arguments in system design. ACM Trans. Comput. Syst. 2(4), 277–288 (1984)
Scheffler, P.: A practical linear time algorithm for disjoint paths in graphs with bounded tree-width. Technical report, TU Berlin (1994)
Schrijver, A.: Finding k disjoint paths in a directed planar graph. SIAM J. Comput. 23(4), 780–788 (1994)
Sebö, A., van Zuylen, A.: The salesman’s improved paths: A 3/2+1/34 approximation. In: Proceedings of FOCS (2016)
Seymour, D.P.: Disjoint paths in graphs. Discrete Math. 29(3), 293–309 (1980)
Shiloach, Y.: A polynomial solution to the undirected two paths problem. J. ACM 27(3), 445–456 (1980)
Srinivas, A., Modiano, E.: Finding minimum energy disjoint paths in wireless ad-hoc networks. Wireless Netw. 11(4), 401–417 (2005)
Thomassen, C.: 2-linked graphs. Europ. J. Comb. 1(4), 371–378 (1980)
Acknowledgments
The authors would like to thank Riko Jacob for helpful discussions and feedback. Klaus-Tycho Foerster’s and Stefan Schmid’s research was partly supported by the Villum project ReNet and by Aalborg University’s PreLytics project. Saeed Amiri’s research was partly supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 648527).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Akhoondian Amiri, S., Foerster, KT., Schmid, S. (2018). Walking Through Waypoints. In: Bender, M., Farach-Colton, M., Mosteiro, M. (eds) LATIN 2018: Theoretical Informatics. LATIN 2018. Lecture Notes in Computer Science(), vol 10807. Springer, Cham. https://doi.org/10.1007/978-3-319-77404-6_4
Download citation
DOI: https://doi.org/10.1007/978-3-319-77404-6_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-77403-9
Online ISBN: 978-3-319-77404-6
eBook Packages: Computer ScienceComputer Science (R0)