Nothing Special   »   [go: up one dir, main page]

Skip to main content

Shifting the Phase Transition Threshold for Random Graphs Using Degree Set Constraints

  • Conference paper
  • First Online:
LATIN 2018: Theoretical Informatics (LATIN 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10807))

Included in the following conference series:

Abstract

We show that by restricting the degrees of the vertices of a graph to an arbitrary set \( \varDelta \), the threshold point \( \alpha (\varDelta ) \) of the phase transition for a random graph with \( n \) vertices and \( m = \alpha (\varDelta ) n \) edges can be either accelerated (e.g., \( \alpha (\varDelta ) \approx 0.381 \) for \( \varDelta = \{0,1,4,5\} \)) or postponed (e.g., \( \alpha (\{ 2^0, 2^1, \cdots , 2^k, \cdots \}) \approx 0.795 \)) compared to a classical Erdős–Rényi random graph with \( \alpha (\mathbb Z_{\ge 0}) = \tfrac{1}{2} \). In particular, we prove that the probability of graph being nonplanar and the probability of having a complex component, goes from \( 0 \) to \( 1 \) as \( m \) passes \( \alpha (\varDelta ) n \). We investigate these probabilities and also different graph statistics inside the critical window of transition (diameter, longest path and circumference of a complex component).

This work is partially supported by the French project MetACOnc, ANR-15-CE40-0014 and by the French project CNRS-PICS-22479.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bohman, T., Freize, A.: Avoiding a giant component. Random Struct. Algorithms 19(1), 75–85 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bollobás, B.: A probabilistic proof of an asymptotic formula for the number of labelled regular graphs. Eur. J. Comb. 1, 311–316 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  3. de Panafieu, É., Ramos, L.: Enumeration of graphs with degree constraints. In: Proceedings of the Meeting on Analytic Algorithmics and Combinatorics (2016)

    Google Scholar 

  4. Erdős, P., Rényi, A.: On the evolution of random graphs. A Magyar Tudományos Akadémia Matematikai Kutató Intézetének Közleményei 5, 17–61 (1960)

    MathSciNet  MATH  Google Scholar 

  5. Flajolet, P., Odlyzko, A.M.: The average height of binary trees and other simple trees. J. Comput. Syst. Sci. 25, 171–213 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  6. Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  7. Hatami, H., Molloy, M.: The scaling window for a random graph with a given degree sequence. Random Struct. Algorithms 41(1), 99–123 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Janson, S., Knuth, D.E., Łuczak, T., Pittel, B.: The birth of the giant component. Random Struct. Algorithms 4(3), 231–358 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  9. Joos, F., Perarnau, G., Rautenbach, D., Reed, B.: How to determine if a random graph with a fixed degree sequence has a giant component. In: 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS), pp. 695–703 (2016)

    Google Scholar 

  10. Liebenau, A., Wormald, N.: Asymptotic enumeration of graphs by degree sequence, and the degree sequence of a random graph. arXiv preprint arXiv:1702.08373 (2017)

  11. Molloy, M., Reed, B.A.: A critical point for random graphs with a given degree sequence. Random Struct. Algorithms 6(2/3), 161–180 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  12. Nachmias, A., Peres, Y.: Critical random graphs: diameter and mixing time. Ann. Probab. 36(4), 1267–1286 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Noy, M., Ravelomanana, V., Rué, J.: On the probability of planarity of a random graph near the critical point. Proc. Am. Math. Soc. 143(3), 925–936 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Riordan, O.: The phase transition in the configuration model. Comb. Probab. Comput. 21(1–2), 265–299 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Riordan, O., Warnke, L.: Achlioptas process phase transitions are continuous. Ann. Appl. Probab. 22(4), 1450–1464 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Riordan, O., Warnke, L.: The phase transition in bounded-size Achlioptas processes. arXiv preprint arXiv:1704.08714 (2017)

Download references

Acknowledgements

We would like to thank Fedor Petrov for his help with a proof of technical condition for saddle-point analysis, Élie de Panafieu, Lutz Warnke, and several anonymous referees for their valuable remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey Dovgal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dovgal, S., Ravelomanana, V. (2018). Shifting the Phase Transition Threshold for Random Graphs Using Degree Set Constraints. In: Bender, M., Farach-Colton, M., Mosteiro, M. (eds) LATIN 2018: Theoretical Informatics. LATIN 2018. Lecture Notes in Computer Science(), vol 10807. Springer, Cham. https://doi.org/10.1007/978-3-319-77404-6_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77404-6_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77403-9

  • Online ISBN: 978-3-319-77404-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics