Abstract
We propose to do object discovery and cosegmentation in noisy datasets with utilization of CNN features. We use an object discovery framework which supposes that common object patterns are sparse concerning transformations across images. The key issue is then how to take advantage of the interrelations among images. Since an image normally matches better with similar images containing the same object than noise images, we exploit the image matching situations of a dataset to capture the interrelations information in it. Comparing with local feature matching, we aim to estimate the dense correspondences between regions with common semantics using mid-level visual information, which captures the visual variability within the whole dataset. Besides, due to the powerful feature learning ability of deep models, we adopt VGG features to do unsupervised clustering and find representative candidates as a prior knowledge. Experiments on noisy datasets show the effectiveness of our method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
We don’t achieve the best performance on P. Our performance on P is quite comparable with the best performance though, especially for Horse100 dataset.
References
Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 511–518. IEEE Press, Kauai (2001)
Papageorgiou, C.P., Oren, M., Poggio, T.: A general framework for object detection. In: International Conference on Computer Vision, vol. 108, pp. 555–562. IEEE Press, Bombay (1998)
Felzenszwalb, P.F., Girshick, R.B., Mcallester, D., Ramanan, D.: Object detection with discriminatively trained part-based models. IEEE Trans. Pattern Anal. Mach. Intell. 32, 1627–1645 (2014)
Szegedy, C., Toshev, A., Erhan, D.: Deep neural networks for object detection. In: Advances in Neural Information Processing Systems, vol. 26, pp. 2553–2561 (2013)
Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Computer, Science, pp. 580–587 (2014)
Barghout, L., Lee, L.: Perceptual information processing system. Adv. Comput. 28, 1–116 (2003)
Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22, 888–905 (2000)
Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. Int. J. Comput. Vis. 59, 167–181 (2004)
Rother, C., Kolmogorov, V., Blake, A.: GrabCut: interactive foreground extraction using iterated graph cuts. In: ACM SIGGRAPH, vol. 23, pp. 309–314. Los Angeles (2004)
Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39, 640 (2015)
Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Semantic image segmentation with deep convolutional nets and fully connected CRFs. In: Computer, Science, pp. 357–361 (2014)
Hariharan, B., Arbeláez, P., Girshick, R., Malik, J.: Simultaneous detection and segmentation. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8695, pp. 297–312. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10584-0_20
Rother, C., Minka, T., Blake, A., Kolmogorov, V.: Cosegmentation of image pairs by histogram matching - incorporating a global constraint into MRFs. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 993–1000. IEEE Press, New York (2006)
Hochbaum, D.S., Singh, V.: An efficient algorithm for co-segmentation. In: IEEE International Conference on Computer Vision, vol. 30, pp. 269–276. IEEE Press, Kyoto (2009)
Joulin, A., Bach, F., Ponce, J.: Discriminative clustering for image co-segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 238, pp. 1943–1950. IEEE Press, San Francisco (2010)
Kim, G., Xing, E.P., Li, F.F., Kanade, T.: Distributed cosegmentation via submodular optimization on anisotropic diffusion. In: IEEE International Conference on Computer Vision, vol. 23, pp. 169–176. IEEE Press, Barcelona (2011)
Joulin, A., Bach, F., Ponce, J.: Multi-class cosegmentation. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 157, pp. 542–549. IEEE Press, Providence (2012)
Tuytelaars, T., Lampert, C.H., Blaschko, M.B., Buntine, W.: Unsupervised object discovery: a comparison. Int. J. Comput. Vis. 88, 284–302 (2010)
Zhu, J.Y., Wu, J., Wei, Y., Chang, E.: Unsupervised object class discovery via saliency-guided multiple class learning. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 37, pp. 3218–3225. IEEE Press, Providence (2012)
Rubinstein, M., Joulin, A., Kopf, J., Liu, C.: Unsupervised joint object discovery and segmentation in internet images. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 9, pp. 1939–1946. IEEE Press, Portland (2013)
Chen, X., Shrivastava, A., Gupta, A.: Enriching visual knowledge bases via object discovery and segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 40, pp. 2035–2042. IEEE Press, Columbus (2014)
Yu, W., Yang, K., Bai, Y., Yao, H., Rui, Y.: DNN flow: DNN feature pyramid based image matching. In: British Machine Vision Conference, vol. 109, pp. 1–10. Nottingham (2014)
Cheng, M.M., Zhang, G.X., Mitra, N.J., Huang, X., Hu, S.M.: Global contrast based salient region detection. In: IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 37, pp. 569–582. IEEE Press (2011)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Wang, Y., Yao, H., Yu, W., Sun, X. (2018). Object Discovery and Cosegmentation Based on Dense Correspondences. In: Zeng, B., Huang, Q., El Saddik, A., Li, H., Jiang, S., Fan, X. (eds) Advances in Multimedia Information Processing – PCM 2017. PCM 2017. Lecture Notes in Computer Science(), vol 10736. Springer, Cham. https://doi.org/10.1007/978-3-319-77383-4_12
Download citation
DOI: https://doi.org/10.1007/978-3-319-77383-4_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-77382-7
Online ISBN: 978-3-319-77383-4
eBook Packages: Computer ScienceComputer Science (R0)