Nothing Special   »   [go: up one dir, main page]

Skip to main content

Object Discovery and Cosegmentation Based on Dense Correspondences

  • Conference paper
  • First Online:
Advances in Multimedia Information Processing – PCM 2017 (PCM 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10736))

Included in the following conference series:

  • 2390 Accesses

Abstract

We propose to do object discovery and cosegmentation in noisy datasets with utilization of CNN features. We use an object discovery framework which supposes that common object patterns are sparse concerning transformations across images. The key issue is then how to take advantage of the interrelations among images. Since an image normally matches better with similar images containing the same object than noise images, we exploit the image matching situations of a dataset to capture the interrelations information in it. Comparing with local feature matching, we aim to estimate the dense correspondences between regions with common semantics using mid-level visual information, which captures the visual variability within the whole dataset. Besides, due to the powerful feature learning ability of deep models, we adopt VGG features to do unsupervised clustering and find representative candidates as a prior knowledge. Experiments on noisy datasets show the effectiveness of our method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://people.csail.mit.edu/mrub/ObjectDiscovery/.

  2. 2.

    We don’t achieve the best performance on P. Our performance on P is quite comparable with the best performance though, especially for Horse100 dataset.

References

  1. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 511–518. IEEE Press, Kauai (2001)

    Google Scholar 

  2. Papageorgiou, C.P., Oren, M., Poggio, T.: A general framework for object detection. In: International Conference on Computer Vision, vol. 108, pp. 555–562. IEEE Press, Bombay (1998)

    Google Scholar 

  3. Felzenszwalb, P.F., Girshick, R.B., Mcallester, D., Ramanan, D.: Object detection with discriminatively trained part-based models. IEEE Trans. Pattern Anal. Mach. Intell. 32, 1627–1645 (2014)

    Article  Google Scholar 

  4. Szegedy, C., Toshev, A., Erhan, D.: Deep neural networks for object detection. In: Advances in Neural Information Processing Systems, vol. 26, pp. 2553–2561 (2013)

    Google Scholar 

  5. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Computer, Science, pp. 580–587 (2014)

    Google Scholar 

  6. Barghout, L., Lee, L.: Perceptual information processing system. Adv. Comput. 28, 1–116 (2003)

    Google Scholar 

  7. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22, 888–905 (2000)

    Article  Google Scholar 

  8. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. Int. J. Comput. Vis. 59, 167–181 (2004)

    Article  Google Scholar 

  9. Rother, C., Kolmogorov, V., Blake, A.: GrabCut: interactive foreground extraction using iterated graph cuts. In: ACM SIGGRAPH, vol. 23, pp. 309–314. Los Angeles (2004)

    Google Scholar 

  10. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39, 640 (2015)

    Google Scholar 

  11. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Semantic image segmentation with deep convolutional nets and fully connected CRFs. In: Computer, Science, pp. 357–361 (2014)

    Google Scholar 

  12. Hariharan, B., Arbeláez, P., Girshick, R., Malik, J.: Simultaneous detection and segmentation. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8695, pp. 297–312. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10584-0_20

    Chapter  Google Scholar 

  13. Rother, C., Minka, T., Blake, A., Kolmogorov, V.: Cosegmentation of image pairs by histogram matching - incorporating a global constraint into MRFs. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 993–1000. IEEE Press, New York (2006)

    Google Scholar 

  14. Hochbaum, D.S., Singh, V.: An efficient algorithm for co-segmentation. In: IEEE International Conference on Computer Vision, vol. 30, pp. 269–276. IEEE Press, Kyoto (2009)

    Google Scholar 

  15. Joulin, A., Bach, F., Ponce, J.: Discriminative clustering for image co-segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 238, pp. 1943–1950. IEEE Press, San Francisco (2010)

    Google Scholar 

  16. Kim, G., Xing, E.P., Li, F.F., Kanade, T.: Distributed cosegmentation via submodular optimization on anisotropic diffusion. In: IEEE International Conference on Computer Vision, vol. 23, pp. 169–176. IEEE Press, Barcelona (2011)

    Google Scholar 

  17. Joulin, A., Bach, F., Ponce, J.: Multi-class cosegmentation. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 157, pp. 542–549. IEEE Press, Providence (2012)

    Google Scholar 

  18. Tuytelaars, T., Lampert, C.H., Blaschko, M.B., Buntine, W.: Unsupervised object discovery: a comparison. Int. J. Comput. Vis. 88, 284–302 (2010)

    Article  Google Scholar 

  19. Zhu, J.Y., Wu, J., Wei, Y., Chang, E.: Unsupervised object class discovery via saliency-guided multiple class learning. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 37, pp. 3218–3225. IEEE Press, Providence (2012)

    Google Scholar 

  20. Rubinstein, M., Joulin, A., Kopf, J., Liu, C.: Unsupervised joint object discovery and segmentation in internet images. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 9, pp. 1939–1946. IEEE Press, Portland (2013)

    Google Scholar 

  21. Chen, X., Shrivastava, A., Gupta, A.: Enriching visual knowledge bases via object discovery and segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 40, pp. 2035–2042. IEEE Press, Columbus (2014)

    Google Scholar 

  22. Yu, W., Yang, K., Bai, Y., Yao, H., Rui, Y.: DNN flow: DNN feature pyramid based image matching. In: British Machine Vision Conference, vol. 109, pp. 1–10. Nottingham (2014)

    Google Scholar 

  23. Cheng, M.M., Zhang, G.X., Mitra, N.J., Huang, X., Hu, S.M.: Global contrast based salient region detection. In: IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 37, pp. 569–582. IEEE Press (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongxun Yao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Y., Yao, H., Yu, W., Sun, X. (2018). Object Discovery and Cosegmentation Based on Dense Correspondences. In: Zeng, B., Huang, Q., El Saddik, A., Li, H., Jiang, S., Fan, X. (eds) Advances in Multimedia Information Processing – PCM 2017. PCM 2017. Lecture Notes in Computer Science(), vol 10736. Springer, Cham. https://doi.org/10.1007/978-3-319-77383-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77383-4_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77382-7

  • Online ISBN: 978-3-319-77383-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics