Nothing Special   »   [go: up one dir, main page]

Skip to main content

CSenticNet: A Concept-Level Resource for Sentiment Analysis in Chinese Language

  • Conference paper
  • First Online:
Computational Linguistics and Intelligent Text Processing (CICLing 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10762))

Abstract

In recent years, sentiment analysis has become a hot topic in natural language processing. Although sentiment analysis research in English is rather mature, Chinese sentiment analysis has just set sail, as the limited amount of sentiment resources in Chinese severely limits its development. In this paper, we present a method for the construction of a Chinese sentiment resource. We utilize both English sentiment resources and the Chinese knowledge base NTU Multi-lingual Corpus. In particular, we first propose a resource based on SentiWordNet and a second version based on SenticNet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://compling.hss.ntu.edu.sg/ntumc/.

  2. 2.

    http://searchforum.org.cn/tansongbo/corpus/ChnSentiCorp_htl_ba_2000.rar.

  3. 3.

    http://product.it168.com.

  4. 4.

    NLP&CC is an annual conference of Chinese information technology professional committee organized by Chinese computer Federation (CCF). More details are available at http://tcci.ccf.org.cn/conference/2013/index.html.

References

  1. Baccianella, S., Esuli, A., Sebastiani, F.: Sentiwordnet 3.0: an enhanced lexical resource for sentiment analysis and opinion mining. In: LREC, vol. 10, pp. 2200–2204 (2010)

    Google Scholar 

  2. Baldwin, T., Kim, S., Bond, F., Fujita, S., Martinez, D., Tanaka, T.: A reexamination of MRD-based word sense disambiguation. ACM Trans. Asian Lang. Inf. Process. (TALIP) 9(1), 4 (2010)

    Google Scholar 

  3. Cambria, E., Hussain, A.: Sentic Computing: A Common-Sense-Based Framework for Concept-Level Sentiment Analysis. Springer, Cham (2015)

    Book  Google Scholar 

  4. Cambria, E., Poria, S., Gelbukh, A., Thelwall, M.: Sentiment analysis is a big suitcase. IEEE Intell. Syst. 32(6), 74–80 (2017)

    Article  Google Scholar 

  5. Cambria, E., Poria, S., Hazarika, D., Kwok, K.: SenticNet 5: discovering conceptual primitives for sentiment analysis by means of context embeddings. In: AAAI, pp. 1795–1802 (2018)

    Google Scholar 

  6. Cambria, E., Hussain, A., Havasi, C., Eckl, C.: Sentic computing: exploitation of common sense for the development of emotion-sensitive systems. In: Esposito, A., Campbell, N., Vogel, C., Hussain, A., Nijholt, A. (eds.) COST 2102 Int. Training School 2009. LNCS, vol. 5967, pp. 148–156. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12397-9_12

    Chapter  Google Scholar 

  7. Carlson, A., Betteridge, J., Kisiel, B., Settles, B., Hruschka Jr, E.R., Mitchell, T.M.: Toward an architecture for never-ending language learning. In: AAAI, vol. 5, p. 3 (2010)

    Google Scholar 

  8. Chaturvedi, I., Cambria, E., Vilares, D.: Lyapunov filtering of objectivity for Spanish sentiment model. In: IJCNN, pp. 4474–4481. Vancouver (2016)

    Google Scholar 

  9. Chen, Q., Li, W., Lei, Y., Liu, X., He, Y.: Learning to adapt credible knowledge in cross-lingual sentiment analysis. In: ACL (2015)

    Google Scholar 

  10. Dong, Z., Dong, Q.: HowNet and the Computation of Meaning. World Scientific (2006)

    Google Scholar 

  11. Fellbaum, C.: WordNet: An Electronic Lexical Database. Bradford Books (1998)

    Google Scholar 

  12. Gui, L., et al.: Cross-lingual opinion analysis via negative transfer detection. In: ACL, vol. 2, pp. 860–865 (2014)

    Google Scholar 

  13. Jain, S., Batra, S.: Cross-lingual sentiment analysis using modified brae. In: EMNLP. Association for Computational Linguistics, pp. 159–168 (2015)

    Google Scholar 

  14. Ku, L.W., Liang, Y.T., Chen, H.H.: Opinion extraction, summarization and tracking in news and blog corpora. In: AAAI Spring Symposium: Computational Approaches to Analyzing Weblogs, vol. 100107 (2006)

    Google Scholar 

  15. Lambert, P.: Aspect-level cross-lingual sentiment classification with constrained SMT. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Short Papers). Association for Computational Linguistics, pp. 781–787 (2015)

    Google Scholar 

  16. Lesk, M.: Automatic sense disambiguation using machine readable dictionaries: how to tell a pine cone from an ice cream cone. In: Proceedings of the 5th Annual International Conference on Systems Documentation, pp. 24–26. ACM (1986)

    Google Scholar 

  17. Li, C., et al.: Recursive deep learning for sentiment analysis over social data. In: Proceedings of the 2014 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT)-Volume 02. IEEE Computer Society, pp. 180–185 (2014)

    Google Scholar 

  18. Ma, Y., Cambria, E., Gao, S.: Label embedding for zero-shot fine-grained named entity typing. In: COLING, pp. 171–180. Osaka (2016)

    Google Scholar 

  19. Majumder, N., Poria, S., Gelbukh, A., Cambria, E.: Deep learning based document modeling for personality detection from text. IEEE Intell. Syst. 32(2), 74–79 (2017)

    Article  Google Scholar 

  20. McArthur, T., McArthur, F.: The Oxford Companion to the English Language. Oxford Companions Series. Oxford University Press, Oxford (1992)

    MATH  Google Scholar 

  21. Mihalcea, R., Banea, C., Wiebe, J.M.: Learning multilingual subjective language via cross-lingual projections (2007)

    Google Scholar 

  22. Mihalcea, R., Garimella, A.: What men say, what women hear: finding gender-specific meaning shades. IEEE Intell. Syst. 31(4), 62–67 (2016)

    Article  Google Scholar 

  23. Pavlenko, A.: Emotions and the body in Russian and English. Pragmat. Cogn. 10(1), 207–241 (2002)

    Article  Google Scholar 

  24. Poria, S., Cambria, E., Gelbukh, A.: Aspect extraction for opinion mining with a deep convolutional neural network. Knowl.-Based Syst. 108, 42–49 (2016)

    Article  Google Scholar 

  25. Poria, S., Cambria, E., Hazarika, D., Vij, P.: A deeper look into sarcastic tweets using deep convolutional neural networks. In: COLING, pp. 1601–1612 (2016)

    Google Scholar 

  26. Quan, C., Ren, F.: Construction of a blog emotion corpus for Chinese emotional expression analysis. In: EMNLP. Association for Computational Linguistics, pp. 1446–1454 (2009)

    Google Scholar 

  27. Rajagopal, D., Cambria, E., Olsher, D., Kwok, K.: A graph-based approach to commonsense concept extraction and semantic similarity detection. In: WWW, Rio De Janeiro, pp. 565–570 (2013)

    Google Scholar 

  28. Tan, L., Bond, F.: Building and annotating the linguistically diverse NTU-MC (NTU-multilingual corpus). Int. J. Asian Lang. Proc. 22(4), 161–174 (2012)

    Google Scholar 

  29. Wierzbicka, A.: Preface: bilingual lives, bilingual experience. J. Multiling. Multicult. Develop. 25(2–3), 94–104 (2004)

    Article  Google Scholar 

  30. Wu, H.H., Tsai, A.C.R., Tsai, R.T.H., Hsu, J.Y.: Building a graded Chinese sentiment dictionary based on commonsense knowledge for sentiment analysis of song lyrics. J. Inf. Sci. Eng. 29(4), 647–662 (2013)

    Google Scholar 

  31. Zhao, Y., Qin, B., Liu, T.: Creating a fine-grained corpus for Chinese sentiment analysis. IEEE Intell. Syst. 30(1), 36–43 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiyun Peng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Peng, H., Cambria, E. (2018). CSenticNet: A Concept-Level Resource for Sentiment Analysis in Chinese Language. In: Gelbukh, A. (eds) Computational Linguistics and Intelligent Text Processing. CICLing 2017. Lecture Notes in Computer Science(), vol 10762. Springer, Cham. https://doi.org/10.1007/978-3-319-77116-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77116-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77115-1

  • Online ISBN: 978-3-319-77116-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics