Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Text Semantic Similarity Approach for Arabic Paraphrase Detection

  • Conference paper
  • First Online:
Computational Linguistics and Intelligent Text Processing (CICLing 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10762))

Abstract

The main challenge of paraphrase is how to detect the semantic relationship between the suspect text document and the source text document. Nowadays, the combination of Natural Language Processing NLP and deep learning based approaches have a booming in the field of text analysis, including: text classification, machine translation, text similarity detection, etc. In this context, we proposed a deep learning based method to detect Arabic paraphrase composed by the following phases: First, we started with a preprocessing phase by extracting the relevant information from text document. Then, word2vec algorithm was used to generate word vectors representation which they would be combined subsequently to generate a sentence vectors representation. Finally, we used a Convolutional Neural Network CNN to improve the ability to capture statistical regularities in the context of sentences which then makes it possible to facilitate the similarity measurement operation between the representations of source and suspicious sentences. The evaluation of our proposed approach gave us a promising result in term of precision.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.lexiophiles.com/english/what-is-special-about-the-arabic-language

  2. 2.

    https://www.tensorflow.org/tutorials/word2vec/

  3. 3.

    https://www.tensorflow.org/api_docs/python/nn/pooling

  4. 4.

    http://www.academia.edu/2424592/OSAC_Open_Source_Arabic_Corpora

References

  1. Abakush I.: Methods and tools for plagiarism detection in Arabic documents. In: International Scientific Conference on ICT and E-Business Related Research SINTEZA, Serbia (2016)

    Google Scholar 

  2. Ramesh, N.R., Landge, M.B., Namrata, M.C.: A review on plagiarism detection tools. Int. J. Comput. Appl. IJCA 125(11), 16–22 (2015)

    Google Scholar 

  3. Cedeno, A.B., Gupta, P., Rosso, P.: Methods for Cross-Language Plagiarism Detection, vol. 50, pp. 211–217. Elsevier, Amsterdam (2013)

    Google Scholar 

  4. Samuel, F., Mark, S.: A semantic similarity approach to paraphrase detection. In: Proceedings of the Computational Linguistics UK CLUK, UK (2008)

    Google Scholar 

  5. Liu, Y., Sun, C., Lin, L., Zhao, Y., Wang, X.: Computing semantic text similarity using rich features. In: The 29th Pacific Asia Conference on Language, Information and Computing, PACLIC29, China (2015)

    Google Scholar 

  6. Ben Mohamed, M.A., Mallat, S., Nahdi, M.A., Zrigui, M.: Exploring the potential of schemes in building NLP tools for Arabic language. Int. Arab. J. Inf. Technol. IAJIT 6(12), 13–19 (2015)

    Google Scholar 

  7. Zrigui, S., Zouaghi, A., Ayadi, R., Zrigui, S., Zrigui, M.: ISAO: an intelligent system of opinion analysis. Res. Comput. Sci. 110, 21–30 (2016)

    Google Scholar 

  8. Meddeb, O., Maraoui, M., Aljawarneh, S.: Hybrid modeling of an offline Arabic handwriting recognition system AHRS. In: International Conference on Engineering & MIS, Maroc (2016)

    Google Scholar 

  9. Zouaghi, A., Zrigui, M., Antoniadis, G.: Compréhension automatique de la parole arabe spontanée. In: Traitement Automatique des Langues, Belgique (2008)

    Google Scholar 

  10. Saidan, T., Zrigui, M., Ahmed, M.B.: La transcription orthographique-phonetique de la langue arabe. In: RÉCITAL, Maroc (2004)

    Google Scholar 

  11. Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In: The 31th International Conference on Machine Learning JMLR, vol. 32, pp. 1188–1196 (2014)

    Google Scholar 

  12. Ameer, A., Youssef, A., JuzaiddinAb, A.M.: Enhanced TF-IDF weighting scheme for plagiarism detection model for Arabic language. Aust. J. Basic Appl. Sci. AEDSI 9, 23, 90–96 (2015)

    Google Scholar 

  13. Omar, K., AlKhatib, B., Dashash, M.: Plagiarism detection in Arabic using translation man medical ontology. Int. J. Curr. Med. Pharm. Res. IJCMPR 2(9), 648–653 (2016)

    Google Scholar 

  14. Dumais, S.T., Letsche, T.A., Littman, M.L., Landaver, T.K.: Automatic cross-language retrieval using latent semantic indexing. In: Spring Symposium Series, Standford (1997)

    Google Scholar 

  15. Barron-Cedeno, A., Rosso, P., Pinto, D., Juan, A.: A cross lingual plagiarism analysis using a statistical model. In: PAN, India (2008)

    Google Scholar 

  16. Farhat, F., Asen, A.S., Zaher, M.A., Fahiem, A.M.: Detection plagiarism in Arabic E-learning using text mining. Britsh J. Math. Comput. Sci. BJMC 8(4), 298–308 (2015)

    Article  Google Scholar 

  17. Rakian, S., Esfahani, F.S., Rastegari, H.: A Persian fuzzy plagiarism detection approach. J. Inf. Syst. Telecommun. JIST 3(3), 182–190 (2015)

    Google Scholar 

  18. Menai, M.E., Bagais, M.: A plag: a plagiarism checker for Arabic texts. In: International Conference on Computer Science & Education (ICCSE), Singapore (2011)

    Google Scholar 

  19. Niraula, N.B., Gantam, D., Banjadae, R., Mahayan, N., Rus, V.: Combining word representations for measuring word relatedness and similarity. In: Twenty-Eighth International Florida Artificial Intelligence Research Society Conference, Florida (2015)

    Google Scholar 

  20. Kin, Y.: Convolutional neural networks for sentence classification. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Qatar (2014)

    Google Scholar 

  21. Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Neural Information Processing Systems NIPS, USA (2013)

    Google Scholar 

  22. He, H., Gimpel, K., Lin, J.: Multi-perspective sentence similarity modeling with convolutional neural networks. In: Empirical Methods in Natural Language Processing EMNLP, Portugal (2015)

    Google Scholar 

  23. He, H., Wieting, J., Gimpel, K., Rao, J., Lin, J.: Attention-based multi-perspective convolutional neural networks for textual similarity measurement. In: International Workshop on Semantic Evaluation SemEval, California (2016)

    Google Scholar 

  24. Mohtarami, M., et al.: Neural-based approaches for ranking in community question answering. In: International Workshop on Semantic Evaluation SemEval, California (2016)

    Google Scholar 

  25. Zhou, L., Wang, H.: News authorship identification with deep learning. In: Conference and Labs of the Evaluation Forum, Portugal (2016)

    Google Scholar 

  26. Liang, M., Hu, X.: Recurrent convolutional neural network for object recognition. In: CVPR 2015, Boston (2015)

    Google Scholar 

  27. Lai, S., Xu, L., Liu, X., Zhao, J.: Reccurent convolutional neural networks for text classification. In: AAAI 2015 Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, Texas (2015)

    Google Scholar 

  28. Alaa, Z., Tiun, S., Abdulameer, M.: Cross-language plagiarism of Arabi-English documents using linear logistic regression. J. Theor. Appl. Inf. Technol. 1(83), 20–33 (2016)

    Google Scholar 

  29. Kahloula, B., Berri, J.: Plagiarism detection in Arabic documents: approaches, architecture and systems. J. Digit. Inf. Manag. 14(2), 124–135 (2016)

    Google Scholar 

  30. Liu, Y., Sun, C., Lin, L., Zhao, Y., Wang, X.: Computing semantic text similarity using rich features. In: The 29th Pacific Asia Conference on Language, Information and Computation PACLIC29, Shanghai (2015)

    Google Scholar 

  31. Altszyler, E., Sigman, M., Selzak, D.F.: Comparative study of LSA vs Word2vec embeddings in small corpora: a case study in dreams database. In: Super Corr Expo Orlando, USA (2016)

    Google Scholar 

  32. Alzahrani, S.: Arabic plagiarism detection using word correlation in N-Grams with K-overlapping approach. In: Working Notes for PAN-ArabPlagDet at FIRE, Gandhinagar (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Adnen Mahmoud or Mounir Zrigui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mahmoud, A., Zrigui, A., Zrigui, M. (2018). A Text Semantic Similarity Approach for Arabic Paraphrase Detection. In: Gelbukh, A. (eds) Computational Linguistics and Intelligent Text Processing. CICLing 2017. Lecture Notes in Computer Science(), vol 10762. Springer, Cham. https://doi.org/10.1007/978-3-319-77116-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77116-8_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77115-1

  • Online ISBN: 978-3-319-77116-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics