Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Meta-Evaluation of Evaluation Methods for Diversified Search

  • Conference paper
  • First Online:
Advances in Information Retrieval (ECIR 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10772))

Included in the following conference series:

Abstract

For the evaluation of diversified search results, a number of different methods have been proposed in the literature. Prior to making use of such evaluation methods, it is important to have a good understanding of how diversity and relevance contribute to the performance metric of each method. In this paper, we use the statistical technique ANOVA to analyse and compare three representative evaluation methods for diversified search, namely \(\alpha \)-nDCG, MAP-IA, and ERR-IA, on the TREC-2009 Web track dataset. It is shown that the performance scores provided by those evaluation methods can indeed reflect two crucial aspects of diversity — richness and evenness — as well as relevance, though to different degrees.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The parameter \(\alpha \) for \(\alpha \)-nDCG was set to 0.5, the default value used in the TREC-2009 Web track diversity task.

References

  1. Agrawal, R., Gollapudi, S., Halverson, A., Ieong, S.: Diversifying search results. In: Proceedings of the 2nd International Conference on Web Search and Web Data Mining (WSDM), Barcelona, Spain, pp. 5–14 (2009)

    Google Scholar 

  2. Begon, M., Harper, J.L., Townsend, C.R.: Ecology: Individuals, Populations, and Communities, 3rd edn. John Wiley & Sons, Hoboken (1996)

    Book  Google Scholar 

  3. Carbonell, J.G., Goldstein, J.: The use of MMR, diversity-based reranking for reordering documents and producing summaries. In: Proceedings of the 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR), Melbourne, Australia, pp. 335–336 (1998)

    Google Scholar 

  4. Chandar, P., Carterette, B.: Analysis of various evaluation measures for diversity. In: Proceedings of the DDR Workshop, Dublin, Ireland, pp. 21–28 (2011)

    Google Scholar 

  5. Chapelle, O., Ji, S., Liao, C., Velipasaoglu, E., Lai, L., Wu, S.L.: Intent-based diversification of web search results: metrics and algorithms. Inf. Retr. 14(6), 572–592 (2011)

    Article  Google Scholar 

  6. Chapelle, O., Metlzer, D., Zhang, Y., Grinspan, P.: Expected reciprocal rank for graded relevance. In: Proceedings of the 18th ACM Conference on Information and Knowledge Management (CIKM), Hong Kong, China, pp. 621–630 (2009)

    Google Scholar 

  7. Clarke, C.L.A., Craswell, N., Soboroff, I.: Overview of the TREC 2009 web track. In: Proceedings of The 18th Text REtrieval Conference (TREC), Gaithersburg, MD, USA (2009)

    Google Scholar 

  8. Clarke, C.L.A., Craswell, N., Soboroff, I., Ashkan, A.: A comparative analysis of cascade measures for novelty and diversity. In: Proceedings of the 4th International Conference on Web Search and Web Data Mining (WSDM), Hong Kong, China, pp. 75–84 (2011)

    Google Scholar 

  9. Clarke, C.L.A., Kolla, M., Cormack, G.V., Vechtomova, O., Ashkan, A., Buttcher, S., MacKinnon, I.: Novelty and diversity in information retrieval evaluation. In: Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR), Singapore, pp. 659–666 (2008)

    Google Scholar 

  10. Gamst, G., Meyers, L.S., Guarino, A.: Analysis of Variance Designs: A Conceptual and Computational Approach with SPSS and SAS. Cambridge University Press, New York (2008)

    Book  MATH  Google Scholar 

  11. Hill, M.O.: Diversity and evenness: a unifying notation and its consequences. Ecology 54(2), 427–432 (1973)

    Article  Google Scholar 

  12. Järvelin, K., Kekäläinen, J.: Cumulated gain-based evaluation of IR techniques. ACM Trans. Inf. Syst. (TOIS) 20(4), 422–446 (2002)

    Article  Google Scholar 

  13. Kingrani, S.K., Levene, M., Zhang, D.: Diversity analysis of web search results. In: Proceedings of the ACM Web Science Conference (WebSci), Oxford, UK, pp. 43:1–43:2 (2015)

    Google Scholar 

  14. Magurran, A.E.: Ecological Diversity and Its Measurement. Princeton University Press, Princeton (1988)

    Book  Google Scholar 

  15. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

  16. Pielou, E.C.: An Introduction to Mathematical Ecology. Wiley-Interscience, New York (1969)

    MATH  Google Scholar 

  17. Santos, R.L., Macdonald, C., Ounis, I.: Search result diversification. Found. Trends Inf. Retr. 9(1), 1–90 (2015)

    Article  Google Scholar 

  18. Zhai, C., Cohen, W.W., Lafferty, J.D.: Beyond independent relevance: methods and evaluation metrics for subtopic retrieval. In: Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR), Toronto, Canada, pp. 10–17 (2003)

    Google Scholar 

  19. Zuccon, G., Azzopardi, L., Zhang, D., Wang, J.: Top-k retrieval using facility location analysis. In: Baeza-Yates, R., de Vries, A.P., Zaragoza, H., Cambazoglu, B.B., Murdock, V., Lempel, R., Silvestri, F. (eds.) ECIR 2012. LNCS, vol. 7224, pp. 305–316. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28997-2_26

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dell Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kingrani, S.K., Levene, M., Zhang, D. (2018). A Meta-Evaluation of Evaluation Methods for Diversified Search. In: Pasi, G., Piwowarski, B., Azzopardi, L., Hanbury, A. (eds) Advances in Information Retrieval. ECIR 2018. Lecture Notes in Computer Science(), vol 10772. Springer, Cham. https://doi.org/10.1007/978-3-319-76941-7_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76941-7_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76940-0

  • Online ISBN: 978-3-319-76941-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics