Nothing Special   »   [go: up one dir, main page]

Skip to main content

Preparation of ATS Drugs 3D Molecular Structure for 3D Moment Invariants-Based Molecular Descriptors

  • Conference paper
  • First Online:
Hybrid Intelligent Systems (HIS 2017)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 734))

Included in the following conference series:

  • 923 Accesses

Abstract

The campaign against drug abuse is fought by all countries, most notably on ATS drugs. The technical limitations of the current test kits to detect new brand of ATS drugs present a challenge to law enforcement authorities and forensic laboratories. Meanwhile, new molecular microscopy imaging devices which enabled the characterization of the physical 3D molecular structure have been recently introduced, and it can be used to remedy the limitations of existing drug test kits. Thus, a new type of 3D molecular structure representation, or molecular descriptors, technique should be developed to cater the 3D molecular structure acquired physically using these molecular imaging devices. One of the applications of image processing methods to represent a 3D image is 3D moment invariants. However, since there are currently no repository or database available which provide the drugs imaging results obtained using these molecular imaging devices, this paper proposes to construct the simulated 3D drugs molecular structure to be used by these 3D moment invariants-based molecular descriptors techniques. The drugs molecular structures are obtained from pihkal.info for the ATS drugs, while non-ATS drugs are obtained randomly from ChemSpider database.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lloyd, A.: The analysis of amphetamine-type stimulants using microchip capillary electrophoresis. Dissertation, University of Technology (2013)

    Google Scholar 

  2. United Nations Office of Drugs and Crime: Recommended Methods for the Identification and Analysis of Amphetamine, Methamphetamine and Their Ring-substituted Analogues in Seized Materials. UNODC, New York, USA, vol. 77 (2006). Sales No. E.06.XI.1

    Google Scholar 

  3. United Nations Office on Drugs and Crime: World Drug Report 2016. UNODC, Vienna, Austria, vol. 16 (2016). Sales No. E.16.XI.7

    Google Scholar 

  4. Drug Enforcement Administration: Drugs of Abuse: A DEA Resource Guide. Drug Enforcement Administration, Springfield (2015)

    Google Scholar 

  5. Bianchi, R.P., Shah, M.N., Rogers, D.H., Mrazik, T.J.: Laboratory analysis of the conversion of pseudoephedrine to methamphetamine from over-the-counter products. Microgram J. 3(1–2), 11–15 (2005)

    Google Scholar 

  6. Cohen, W.S.: Ephedra used as a precursor in methamphetamine manufacturing. J. Clandestine Lab. Investigating Chem. 16(2), 21–22 (2006)

    Google Scholar 

  7. Biavardi, E., Federici, S., Tudisco, C., Menozzi, D., Massera, C., Sottini, A., Condorelli, G.G., Bergese, P., Dalcanale, E.: Cavitand-grafted silicon microcantilevers as a universal probe for illicit and designer drugs in water. Angew. Chem. Int. Ed. Engl. 53(35), 9183–9188 (2014). https://doi.org/10.1002/anie.201404774

    Article  Google Scholar 

  8. Cary, P.L.: Designer drugs: what drug court practitioners need to know. Drug Court Pract. Fact Sheet IX(2), 1–13 (2014)

    Google Scholar 

  9. Swortwood, M.J.: Comprehensive forensic toxicological analysis of designer drugs. Dissertation, Florida International University (2013)

    Google Scholar 

  10. Smith, M.C.F.: But what of designer drugs? Adv. Psychiatr. Treat. 17(2), 158 (2011). https://doi.org/10.1192/apt.17.2.158

    Article  Google Scholar 

  11. Pratama, S.F., Pratiwi, L., Abraham, A., Muda, A.K.: Computational intelligence in digital forensics. In: Muda, A.K., Choo, Y.-H., Abraham, A.N., Srihari, S. (eds.) Computational Intelligence in Digital Forensics: Forensic Investigation and Applications. Studies in Computational Intelligence, vol. 555, pp. 1–16. Springer (2014)

    Google Scholar 

  12. Krasowski, M.D., Ekins, S.: Using cheminformatics to predict cross reactivity of “designer drugs” to their currently available immunoassays. J. Cheminform 6(1), 22 (2014). https://doi.org/10.1186/1758-2946-6-22

    Article  Google Scholar 

  13. Krasowski, M.D., Pizon, A.F., Siam, M.G., Giannoutsos, S., Iyer, M., Ekins, S.: Using molecular similarity to highlight the challenges of routine immunoassay-based drug of abuse/toxicology screening in emergency medicine. BMC Emerg. Med. 9(5), 1–18 (2009). https://doi.org/10.1186/1471-227X-9-5

    Article  Google Scholar 

  14. Krasowski, M.D., Siam, M.G., Iyer, M., Ekins, S.: Molecular similarity methods for predicting cross-reactivity with therapeutic drug monitoring immunoassays. Ther. Drug Monit. 31(3), 337–344 (2009). https://doi.org/10.1097/FTD.0b013e31819c1b83

    Article  Google Scholar 

  15. Krasowski, M.D., Siam, M.G., Iyer, M., Pizon, A.F., Giannoutsos, S., Ekins, S.: Chemoinformatic methods for predicting interference in drug of abuse/toxicology immunoassays. Clin. Chem. 55(6), 1203–1213 (2009). https://doi.org/10.1373/clinchem.2008.118638

    Article  Google Scholar 

  16. Petrie, M., Lynch, K.L., Ekins, S., Chang, J.S., Goetz, R.J., Wu, A.H., Krasowski, M.D.: Cross-reactivity studies and predictive modeling of “Bath Salts” and other amphetamine-type stimulants with amphetamine screening immunoassays. Clin. Toxicol. (Phila) 51(2), 83–91 (2013). https://doi.org/10.3109/15563650.2013.768344

    Article  Google Scholar 

  17. Gute, B.D., Basak, S.C.: Optimal neighbor selection in molecular similarity: comparison of arbitrary versus tailored prediction spaces. SAR QSAR Environ. Res. 17(1), 37–51 (2006). https://doi.org/10.1080/10659360600560933

    Article  Google Scholar 

  18. Amine, A., Elberrichi, Z., Simonet, M., Rahmouni, A.: A Hybrid Approach Based on Self-Organizing Neural Networks and the K-Nearest Neighbors Method to Study Molecular Similarity. Int. J. Chemoinform. Chem. Eng. 1(1), 75–95 (2011). https://doi.org/10.4018/ijcce.2011010106

    Article  Google Scholar 

  19. Klopmand, G.: Concepts and applications of molecular similarity, by Mark A. Johnson and Gerald M. Maggiora, eds., John Wiley & Sons, New York, 1990, 393 pp. Price: $65.00. J. Comput. Chem. 13(4), 539–540 (1992). https://doi.org/10.1002/jcc.540130415

    Article  Google Scholar 

  20. Patterson, D.E., Cramer, R.D., Ferguson, A.M., Clark, R.D., Weinberger, L.E.: Neighborhood behavior: a useful concept for validation of “molecular diversity” descriptors. J. Med. Chem. 39(16), 3049–3059 (1996). https://doi.org/10.1021/jm960290n

    Article  Google Scholar 

  21. Martin, Y.C., Kofron, J.L., Traphagen, L.M.: Do structurally similar molecules have similar biological activity? J. Med. Chem. 45(19), 4350–4358 (2002)

    Article  Google Scholar 

  22. Bender, A., Glen, R.C.: Molecular similarity: a key technique in molecular informatics. Org. Biomol. Chem. 2(22), 3204–3218 (2004). https://doi.org/10.1039/B409813G

    Article  Google Scholar 

  23. Willett, P., Barnard, J.M., Downs, G.M.: Chemical similarity searching. J. Chem. Inf. Comput. Sci. 38(6), 983–996 (1998). https://doi.org/10.1021/ci9800211

    Article  Google Scholar 

  24. Bender, A.: Studies on molecular similarity. Dissertation, University of Cambridge (2005)

    Google Scholar 

  25. Consonni, V., Todeschini, R.: Molecular descriptors. In: Puzyn, T., Leszczynski, J., Cronin, T.M. (eds.) Recent Advances in QSAR Studies: Methods and Applications, pp. 29–102. Springer Netherlands, Dordrecht, Netherlands (2010)

    Google Scholar 

  26. Gasteiger, J., Engel, T.: Chemoinformatics: A Textbook. Wiley-VCH Verlag, Weinheim (2003)

    Book  Google Scholar 

  27. Axenopoulos, A., Daras, P., Papadopoulos, G., Houstis, E.N.: A shape descriptor for fast complementarity matching in molecular docking. IEEE/ACM Trans. Comput. Biol. Bioinform. 8(6), 1441–1457 (2011). https://doi.org/10.1109/TCBB.2011.72

    Article  Google Scholar 

  28. Estrada, E.: Generalized graph matrix, graph geometry, quantum chemistry, and optimal description of physicochemical properties. J. Phys. Chem. A 107(38), 7482–7489 (2003). https://doi.org/10.1021/jp0346561

    Article  Google Scholar 

  29. Kortagere, S., Krasowski, M.D., Ekins, S.: The importance of discerning shape in molecular pharmacology. Trends Pharmacol. Sci. 30(3), 138–147 (2009). https://doi.org/10.1016/j.tips.2008.12.001

    Article  Google Scholar 

  30. de Oteyza, D.G., Gorman, P., Chen, Y.C., Wickenburg, S., Riss, A., Mowbray, D.J., Etkin, G., Pedramrazi, Z., Tsai, H.Z., Rubio, A., Crommie, M.F., Fischer, F.R.: Direct imaging of covalent bond structure in single-molecule chemical reactions. Science 340(6139), 1434–1437 (2013). https://doi.org/10.1126/science.1238187

    Article  Google Scholar 

  31. Gross, L., Mohn, F., Moll, N., Liljeroth, P., Meyer, G.: The chemical structure of a molecule resolved by atomic force microscopy. Science 325(5944), 1110–1114 (2009). https://doi.org/10.1126/science.1176210

    Article  Google Scholar 

  32. Gross, L., Mohn, F., Moll, N., Meyer, G., Ebel, R., Abdel-Mageed, W.M., Jaspars, M.: Organic structure determination using atomic-resolution scanning probe microscopy. Nat. Chem. 2(10), 821–825 (2010)

    Article  Google Scholar 

  33. Gross, L., Mohn, F., Moll, N., Schuler, B., Criado, A., Guitian, E., Pena, D., Gourdon, A., Meyer, G.: Bond-order discrimination by atomic force microscopy. Science 337(6100), 1326–1329 (2012). https://doi.org/10.1126/science.1225621

    Article  Google Scholar 

  34. Hanssen, K.O., Schuler, B., Williams, A.J., Demissie, T.B., Hansen, E., Andersen, J.H., Svenson, J., Blinov, K., Repisky, M., Mohn, F., Meyer, G., Svendsen, J.S., Ruud, K., Elyashberg, M., Gross, L., Jaspars, M., Isaksson, J.: A combined atomic force microscopy and computational approach for the structural elucidation of breitfussin A and B: highly modified halogenated dipeptides from Thuiaria breitfussi. Angew. Chem. Int. Ed. Engl. 51(49), 12238–12241 (2012). https://doi.org/10.1002/anie.201203960

    Article  Google Scholar 

  35. Pavliček, N., Fleury, B., Neu, M., Niedenführ, J., Herranz-Lancho, C., Ruben, M., Repp, J.: Atomic force microscopy reveals bistable configurations of Dibenzo[a, h]thianthrene and their interconversion pathway. Phys. Rev. Lett. 108(8), 1–5 (2012)

    Article  Google Scholar 

  36. Consonni, V., Todeschini, R.: Basic Requirements for Valid Molecular Descriptors (2006). http://www.moleculardescriptors.eu/tutorials/T3_moleculardescriptors_requirements.pdf. Accessed 28 Jan 2016

  37. Randić, M.: Molecular bonding profiles. J. Math. Chem. 19(3), 375–392 (1996). https://doi.org/10.1007/bf01166727

    Article  MathSciNet  Google Scholar 

  38. Sun, Y., Liu, W., Wang, Y.: United moment invariants for shape discrimination. In: IEEE International Conference on Robotics, Intelligent Systems and Signal Processing, Changsha, China, 8–13 October 2003, pp. 88–93. IEEE (2003)

    Google Scholar 

  39. Kihara, D., Sael, L., Chikhi, R., Esquivel-Rodriguez, J.: Molecular surface representation using 3D Zernike descriptors for protein shape comparison and docking. Curr. Protein Pept. Sci. 12(6), 520–530 (2011)

    Article  Google Scholar 

  40. Sael, L., Li, B., La, D., Fang, Y., Ramani, K., Rustamov, R., Kihara, D.: Fast protein tertiary structure retrieval based on global surface shape similarity. Proteins 72(4), 1259–1273 (2008). https://doi.org/10.1002/prot.22030

    Article  Google Scholar 

  41. Langman, L.J., Bowers, L.D., Collins, J.A., Hammett-Stabler, C.A., LeBeau, M.A.: Gas Chromatography/Mass Spectrometry Confirmation of Drugs; Approved Guidelines, 2nd edn. Clinical and Laboratory Standards Institute, Pennsylvania, USA (2010)

    Google Scholar 

  42. Lin, D.-L., Yin, R.-M., Ray, L.H.: Gas Chromatography-Mass Spectrometry (GC-MS) analysis of Amphetamine, Methamphetamine, 3,4-Methylenedioxyamphetamine and 3,4-Methylenedioxymethamphetamine in Human Hair and Hair Sections. J. Food Drug Anal. 13(3), 193–200 (2005)

    Google Scholar 

  43. McShane, J.J.: GC-MS is Not Perfect: The Case Study of Methamphetamine (2011). http://www.thetruthaboutforensicscience.com/gc-ms-is-not-perfect-the-case-study-of-methamphetamine/. Accessed 13 Mar 2012

  44. International Union of Pure and Applied Chemistry: Compendium of Chemical Terminology, 2nd edn. Gold Book, Blackwell Scientific Publications, Oxford (2006)

    Google Scholar 

  45. Mendelson, J., Uemura, N., Harris, D., Nath, R.P., Fernandez, E., Jacob 3rd, P., Everhart, E.T., Jones, R.T.: Human pharmacology of the methamphetamine stereoisomers. Clin. Pharmacol. Ther. 80(4), 403–420 (2006). https://doi.org/10.1016/j.clpt.2006.06.013

    Article  Google Scholar 

  46. Rahman, S.A., Bashton, M., Holliday, G.L., Schrader, R., Thornton, J.M.: Small molecule subgraph detector (SMSD) toolkit. J. Cheminform. 1(1), 12 (2009). https://doi.org/10.1186/1758-2946-1-12

    Article  Google Scholar 

  47. Nikolova, N., Jaworska, J.: Approaches to measure chemical similarity – a review. QSAR Comb. Sci. 22(9–10), 1006–1026 (2003)

    Article  Google Scholar 

  48. Morita, S.: Introduction. In: Morita, S., Giessibl, F.J., Meyer, E., Wiesendanger, R. (eds.) Noncontact Atomic Force Microscopy, vol. 3, pp. 1–8. Springer, Cham (2015)

    Google Scholar 

  49. Ma, Y., Soatto, S., Košecká, J., Sastry, S.S.: Step-by-step building of a 3-D model from images. In: Ma, Y., Soatto, S., Košecká, J., Sastry, S.S. (eds.) An Invitation to 3-D Vision: From Images to Geometric Models, pp. 375–411. Springer, New York (2004)

    Chapter  Google Scholar 

  50. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, New York (2003)

    MATH  Google Scholar 

  51. Choy, C.B., Xu, D., Gwak, J., Chen, K., Savarese, S.: 3D-R2N2: a unified approach for single and multi-view 3D object reconstruction. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) Computer Vision – ECCV 2016: Proceedings of 14th European Conference, Part VIII, Amsterdam, Netherlands, 11–14 October 2016, pp. 628–644. Springer (2016)

    Google Scholar 

  52. Kar, A., Tulsiani, S., Carreira, J., Malik, J.: Category-specific object reconstruction from a single image. In: Computer Vision Foundation (ed.) 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, USA, 7–12 June 2015, pp. 1966–1974. IEEE Computer Society (2015)

    Google Scholar 

  53. Isomer Design: pihkal.info. (2015). http://isomerdesign.com/PiHKAL/. Accessed 23 Jan 2016

  54. Royal Society of Chemistry: ChemSpider Database (2015). http://www.chemspider.com/. Accessed 23 Jan 2016

  55. ChemAxon Ltd.: Marvin (2016). http://www.chemaxon.com. Accessed 30 Nov 2016

  56. Jmol: Jmol: an open-source Java viewer for chemical structures in 3D (2016). http://www.jmol.org/. Accessed 30 Nov 2016

  57. Min, P.: binvox 3D mesh voxelizer (2016). http://www.patrickmin/binvox. Accessed 30 Nov 2016

  58. Yang, B., Flusser, J., Suk, T.: 3D rotation invariants of Gaussian-Hermite moments. Patt. Recogn. Lett. 54, 18–26 (2015). https://doi.org/10.1016/j.patrec.2014.11.014

    Article  Google Scholar 

  59. Connolly, M.L.: Solvent-accessible surfaces of proteins and nucleic acids. Science 221(4612), 709–713 (1983)

    Article  Google Scholar 

  60. Min, P.: meshconv 3D model converter (2017). http://www.patrickmin.com/meshconv. Accessed 9 Nov 2017

Download references

Acknowledgement

This work was supported by UTeM Postgraduate Fellowship (Zamalah) Scheme and PJP High Impact Research Grant (S01473-PJP/2016/FTMK/HI3) from Universiti Teknikal Malaysia Melaka (UTeM), Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azah Kamilah Muda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pratama, S.F., Muda, A.K., Choo, YH., Abraham, A. (2018). Preparation of ATS Drugs 3D Molecular Structure for 3D Moment Invariants-Based Molecular Descriptors. In: Abraham, A., Muhuri, P., Muda, A., Gandhi, N. (eds) Hybrid Intelligent Systems. HIS 2017. Advances in Intelligent Systems and Computing, vol 734. Springer, Cham. https://doi.org/10.1007/978-3-319-76351-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76351-4_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76350-7

  • Online ISBN: 978-3-319-76351-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics