Abstract
The campaign against drug abuse is fought by all countries, most notably on ATS drugs. The technical limitations of the current test kits to detect new brand of ATS drugs present a challenge to law enforcement authorities and forensic laboratories. Meanwhile, new molecular microscopy imaging devices which enabled the characterization of the physical 3D molecular structure have been recently introduced, and it can be used to remedy the limitations of existing drug test kits. Thus, a new type of 3D molecular structure representation, or molecular descriptors, technique should be developed to cater the 3D molecular structure acquired physically using these molecular imaging devices. One of the applications of image processing methods to represent a 3D image is 3D moment invariants. However, since there are currently no repository or database available which provide the drugs imaging results obtained using these molecular imaging devices, this paper proposes to construct the simulated 3D drugs molecular structure to be used by these 3D moment invariants-based molecular descriptors techniques. The drugs molecular structures are obtained from pihkal.info for the ATS drugs, while non-ATS drugs are obtained randomly from ChemSpider database.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Lloyd, A.: The analysis of amphetamine-type stimulants using microchip capillary electrophoresis. Dissertation, University of Technology (2013)
United Nations Office of Drugs and Crime: Recommended Methods for the Identification and Analysis of Amphetamine, Methamphetamine and Their Ring-substituted Analogues in Seized Materials. UNODC, New York, USA, vol. 77 (2006). Sales No. E.06.XI.1
United Nations Office on Drugs and Crime: World Drug Report 2016. UNODC, Vienna, Austria, vol. 16 (2016). Sales No. E.16.XI.7
Drug Enforcement Administration: Drugs of Abuse: A DEA Resource Guide. Drug Enforcement Administration, Springfield (2015)
Bianchi, R.P., Shah, M.N., Rogers, D.H., Mrazik, T.J.: Laboratory analysis of the conversion of pseudoephedrine to methamphetamine from over-the-counter products. Microgram J. 3(1–2), 11–15 (2005)
Cohen, W.S.: Ephedra used as a precursor in methamphetamine manufacturing. J. Clandestine Lab. Investigating Chem. 16(2), 21–22 (2006)
Biavardi, E., Federici, S., Tudisco, C., Menozzi, D., Massera, C., Sottini, A., Condorelli, G.G., Bergese, P., Dalcanale, E.: Cavitand-grafted silicon microcantilevers as a universal probe for illicit and designer drugs in water. Angew. Chem. Int. Ed. Engl. 53(35), 9183–9188 (2014). https://doi.org/10.1002/anie.201404774
Cary, P.L.: Designer drugs: what drug court practitioners need to know. Drug Court Pract. Fact Sheet IX(2), 1–13 (2014)
Swortwood, M.J.: Comprehensive forensic toxicological analysis of designer drugs. Dissertation, Florida International University (2013)
Smith, M.C.F.: But what of designer drugs? Adv. Psychiatr. Treat. 17(2), 158 (2011). https://doi.org/10.1192/apt.17.2.158
Pratama, S.F., Pratiwi, L., Abraham, A., Muda, A.K.: Computational intelligence in digital forensics. In: Muda, A.K., Choo, Y.-H., Abraham, A.N., Srihari, S. (eds.) Computational Intelligence in Digital Forensics: Forensic Investigation and Applications. Studies in Computational Intelligence, vol. 555, pp. 1–16. Springer (2014)
Krasowski, M.D., Ekins, S.: Using cheminformatics to predict cross reactivity of “designer drugs” to their currently available immunoassays. J. Cheminform 6(1), 22 (2014). https://doi.org/10.1186/1758-2946-6-22
Krasowski, M.D., Pizon, A.F., Siam, M.G., Giannoutsos, S., Iyer, M., Ekins, S.: Using molecular similarity to highlight the challenges of routine immunoassay-based drug of abuse/toxicology screening in emergency medicine. BMC Emerg. Med. 9(5), 1–18 (2009). https://doi.org/10.1186/1471-227X-9-5
Krasowski, M.D., Siam, M.G., Iyer, M., Ekins, S.: Molecular similarity methods for predicting cross-reactivity with therapeutic drug monitoring immunoassays. Ther. Drug Monit. 31(3), 337–344 (2009). https://doi.org/10.1097/FTD.0b013e31819c1b83
Krasowski, M.D., Siam, M.G., Iyer, M., Pizon, A.F., Giannoutsos, S., Ekins, S.: Chemoinformatic methods for predicting interference in drug of abuse/toxicology immunoassays. Clin. Chem. 55(6), 1203–1213 (2009). https://doi.org/10.1373/clinchem.2008.118638
Petrie, M., Lynch, K.L., Ekins, S., Chang, J.S., Goetz, R.J., Wu, A.H., Krasowski, M.D.: Cross-reactivity studies and predictive modeling of “Bath Salts” and other amphetamine-type stimulants with amphetamine screening immunoassays. Clin. Toxicol. (Phila) 51(2), 83–91 (2013). https://doi.org/10.3109/15563650.2013.768344
Gute, B.D., Basak, S.C.: Optimal neighbor selection in molecular similarity: comparison of arbitrary versus tailored prediction spaces. SAR QSAR Environ. Res. 17(1), 37–51 (2006). https://doi.org/10.1080/10659360600560933
Amine, A., Elberrichi, Z., Simonet, M., Rahmouni, A.: A Hybrid Approach Based on Self-Organizing Neural Networks and the K-Nearest Neighbors Method to Study Molecular Similarity. Int. J. Chemoinform. Chem. Eng. 1(1), 75–95 (2011). https://doi.org/10.4018/ijcce.2011010106
Klopmand, G.: Concepts and applications of molecular similarity, by Mark A. Johnson and Gerald M. Maggiora, eds., John Wiley & Sons, New York, 1990, 393 pp. Price: $65.00. J. Comput. Chem. 13(4), 539–540 (1992). https://doi.org/10.1002/jcc.540130415
Patterson, D.E., Cramer, R.D., Ferguson, A.M., Clark, R.D., Weinberger, L.E.: Neighborhood behavior: a useful concept for validation of “molecular diversity” descriptors. J. Med. Chem. 39(16), 3049–3059 (1996). https://doi.org/10.1021/jm960290n
Martin, Y.C., Kofron, J.L., Traphagen, L.M.: Do structurally similar molecules have similar biological activity? J. Med. Chem. 45(19), 4350–4358 (2002)
Bender, A., Glen, R.C.: Molecular similarity: a key technique in molecular informatics. Org. Biomol. Chem. 2(22), 3204–3218 (2004). https://doi.org/10.1039/B409813G
Willett, P., Barnard, J.M., Downs, G.M.: Chemical similarity searching. J. Chem. Inf. Comput. Sci. 38(6), 983–996 (1998). https://doi.org/10.1021/ci9800211
Bender, A.: Studies on molecular similarity. Dissertation, University of Cambridge (2005)
Consonni, V., Todeschini, R.: Molecular descriptors. In: Puzyn, T., Leszczynski, J., Cronin, T.M. (eds.) Recent Advances in QSAR Studies: Methods and Applications, pp. 29–102. Springer Netherlands, Dordrecht, Netherlands (2010)
Gasteiger, J., Engel, T.: Chemoinformatics: A Textbook. Wiley-VCH Verlag, Weinheim (2003)
Axenopoulos, A., Daras, P., Papadopoulos, G., Houstis, E.N.: A shape descriptor for fast complementarity matching in molecular docking. IEEE/ACM Trans. Comput. Biol. Bioinform. 8(6), 1441–1457 (2011). https://doi.org/10.1109/TCBB.2011.72
Estrada, E.: Generalized graph matrix, graph geometry, quantum chemistry, and optimal description of physicochemical properties. J. Phys. Chem. A 107(38), 7482–7489 (2003). https://doi.org/10.1021/jp0346561
Kortagere, S., Krasowski, M.D., Ekins, S.: The importance of discerning shape in molecular pharmacology. Trends Pharmacol. Sci. 30(3), 138–147 (2009). https://doi.org/10.1016/j.tips.2008.12.001
de Oteyza, D.G., Gorman, P., Chen, Y.C., Wickenburg, S., Riss, A., Mowbray, D.J., Etkin, G., Pedramrazi, Z., Tsai, H.Z., Rubio, A., Crommie, M.F., Fischer, F.R.: Direct imaging of covalent bond structure in single-molecule chemical reactions. Science 340(6139), 1434–1437 (2013). https://doi.org/10.1126/science.1238187
Gross, L., Mohn, F., Moll, N., Liljeroth, P., Meyer, G.: The chemical structure of a molecule resolved by atomic force microscopy. Science 325(5944), 1110–1114 (2009). https://doi.org/10.1126/science.1176210
Gross, L., Mohn, F., Moll, N., Meyer, G., Ebel, R., Abdel-Mageed, W.M., Jaspars, M.: Organic structure determination using atomic-resolution scanning probe microscopy. Nat. Chem. 2(10), 821–825 (2010)
Gross, L., Mohn, F., Moll, N., Schuler, B., Criado, A., Guitian, E., Pena, D., Gourdon, A., Meyer, G.: Bond-order discrimination by atomic force microscopy. Science 337(6100), 1326–1329 (2012). https://doi.org/10.1126/science.1225621
Hanssen, K.O., Schuler, B., Williams, A.J., Demissie, T.B., Hansen, E., Andersen, J.H., Svenson, J., Blinov, K., Repisky, M., Mohn, F., Meyer, G., Svendsen, J.S., Ruud, K., Elyashberg, M., Gross, L., Jaspars, M., Isaksson, J.: A combined atomic force microscopy and computational approach for the structural elucidation of breitfussin A and B: highly modified halogenated dipeptides from Thuiaria breitfussi. Angew. Chem. Int. Ed. Engl. 51(49), 12238–12241 (2012). https://doi.org/10.1002/anie.201203960
Pavliček, N., Fleury, B., Neu, M., Niedenführ, J., Herranz-Lancho, C., Ruben, M., Repp, J.: Atomic force microscopy reveals bistable configurations of Dibenzo[a, h]thianthrene and their interconversion pathway. Phys. Rev. Lett. 108(8), 1–5 (2012)
Consonni, V., Todeschini, R.: Basic Requirements for Valid Molecular Descriptors (2006). http://www.moleculardescriptors.eu/tutorials/T3_moleculardescriptors_requirements.pdf. Accessed 28 Jan 2016
Randić, M.: Molecular bonding profiles. J. Math. Chem. 19(3), 375–392 (1996). https://doi.org/10.1007/bf01166727
Sun, Y., Liu, W., Wang, Y.: United moment invariants for shape discrimination. In: IEEE International Conference on Robotics, Intelligent Systems and Signal Processing, Changsha, China, 8–13 October 2003, pp. 88–93. IEEE (2003)
Kihara, D., Sael, L., Chikhi, R., Esquivel-Rodriguez, J.: Molecular surface representation using 3D Zernike descriptors for protein shape comparison and docking. Curr. Protein Pept. Sci. 12(6), 520–530 (2011)
Sael, L., Li, B., La, D., Fang, Y., Ramani, K., Rustamov, R., Kihara, D.: Fast protein tertiary structure retrieval based on global surface shape similarity. Proteins 72(4), 1259–1273 (2008). https://doi.org/10.1002/prot.22030
Langman, L.J., Bowers, L.D., Collins, J.A., Hammett-Stabler, C.A., LeBeau, M.A.: Gas Chromatography/Mass Spectrometry Confirmation of Drugs; Approved Guidelines, 2nd edn. Clinical and Laboratory Standards Institute, Pennsylvania, USA (2010)
Lin, D.-L., Yin, R.-M., Ray, L.H.: Gas Chromatography-Mass Spectrometry (GC-MS) analysis of Amphetamine, Methamphetamine, 3,4-Methylenedioxyamphetamine and 3,4-Methylenedioxymethamphetamine in Human Hair and Hair Sections. J. Food Drug Anal. 13(3), 193–200 (2005)
McShane, J.J.: GC-MS is Not Perfect: The Case Study of Methamphetamine (2011). http://www.thetruthaboutforensicscience.com/gc-ms-is-not-perfect-the-case-study-of-methamphetamine/. Accessed 13 Mar 2012
International Union of Pure and Applied Chemistry: Compendium of Chemical Terminology, 2nd edn. Gold Book, Blackwell Scientific Publications, Oxford (2006)
Mendelson, J., Uemura, N., Harris, D., Nath, R.P., Fernandez, E., Jacob 3rd, P., Everhart, E.T., Jones, R.T.: Human pharmacology of the methamphetamine stereoisomers. Clin. Pharmacol. Ther. 80(4), 403–420 (2006). https://doi.org/10.1016/j.clpt.2006.06.013
Rahman, S.A., Bashton, M., Holliday, G.L., Schrader, R., Thornton, J.M.: Small molecule subgraph detector (SMSD) toolkit. J. Cheminform. 1(1), 12 (2009). https://doi.org/10.1186/1758-2946-1-12
Nikolova, N., Jaworska, J.: Approaches to measure chemical similarity – a review. QSAR Comb. Sci. 22(9–10), 1006–1026 (2003)
Morita, S.: Introduction. In: Morita, S., Giessibl, F.J., Meyer, E., Wiesendanger, R. (eds.) Noncontact Atomic Force Microscopy, vol. 3, pp. 1–8. Springer, Cham (2015)
Ma, Y., Soatto, S., Košecká, J., Sastry, S.S.: Step-by-step building of a 3-D model from images. In: Ma, Y., Soatto, S., Košecká, J., Sastry, S.S. (eds.) An Invitation to 3-D Vision: From Images to Geometric Models, pp. 375–411. Springer, New York (2004)
Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, New York (2003)
Choy, C.B., Xu, D., Gwak, J., Chen, K., Savarese, S.: 3D-R2N2: a unified approach for single and multi-view 3D object reconstruction. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) Computer Vision – ECCV 2016: Proceedings of 14th European Conference, Part VIII, Amsterdam, Netherlands, 11–14 October 2016, pp. 628–644. Springer (2016)
Kar, A., Tulsiani, S., Carreira, J., Malik, J.: Category-specific object reconstruction from a single image. In: Computer Vision Foundation (ed.) 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, USA, 7–12 June 2015, pp. 1966–1974. IEEE Computer Society (2015)
Isomer Design: pihkal.info. (2015). http://isomerdesign.com/PiHKAL/. Accessed 23 Jan 2016
Royal Society of Chemistry: ChemSpider Database (2015). http://www.chemspider.com/. Accessed 23 Jan 2016
ChemAxon Ltd.: Marvin (2016). http://www.chemaxon.com. Accessed 30 Nov 2016
Jmol: Jmol: an open-source Java viewer for chemical structures in 3D (2016). http://www.jmol.org/. Accessed 30 Nov 2016
Min, P.: binvox 3D mesh voxelizer (2016). http://www.patrickmin/binvox. Accessed 30 Nov 2016
Yang, B., Flusser, J., Suk, T.: 3D rotation invariants of Gaussian-Hermite moments. Patt. Recogn. Lett. 54, 18–26 (2015). https://doi.org/10.1016/j.patrec.2014.11.014
Connolly, M.L.: Solvent-accessible surfaces of proteins and nucleic acids. Science 221(4612), 709–713 (1983)
Min, P.: meshconv 3D model converter (2017). http://www.patrickmin.com/meshconv. Accessed 9 Nov 2017
Acknowledgement
This work was supported by UTeM Postgraduate Fellowship (Zamalah) Scheme and PJP High Impact Research Grant (S01473-PJP/2016/FTMK/HI3) from Universiti Teknikal Malaysia Melaka (UTeM), Malaysia.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Pratama, S.F., Muda, A.K., Choo, YH., Abraham, A. (2018). Preparation of ATS Drugs 3D Molecular Structure for 3D Moment Invariants-Based Molecular Descriptors. In: Abraham, A., Muhuri, P., Muda, A., Gandhi, N. (eds) Hybrid Intelligent Systems. HIS 2017. Advances in Intelligent Systems and Computing, vol 734. Springer, Cham. https://doi.org/10.1007/978-3-319-76351-4_26
Download citation
DOI: https://doi.org/10.1007/978-3-319-76351-4_26
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-76350-7
Online ISBN: 978-3-319-76351-4
eBook Packages: EngineeringEngineering (R0)