Nothing Special   »   [go: up one dir, main page]

Skip to main content

Software Packages for Econometrics: Financial Time Series Modeling

  • Conference paper
  • First Online:
Information and Communication Technologies in Education, Research, and Industrial Applications (ICTERI 2017)

Abstract

In the article the comparative analysis of most common among economists software packages R, EViews and Gretl in financial time series modeling is conducted. Advantages and disadvantages of each software are considered. Volatility is often used as a rough approximation to measuring of financial instruments risk. For the modeling of financial time series volatility Polish stock index WIG was chosen. For describing the volatility of financial time series econometric model of family GARCH is built by means of these packages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Greene, W.: Econometric Analysis. Prentice-Hall, Upper Saddle River (2008)

    Google Scholar 

  2. Black, F.: Studies of stock price volatility changes. In: Proceedings of the Business and Economic Statistics. American Statistical Association, Washington, DC (1976)

    Google Scholar 

  3. Box, G.E.P., Jenkins, G.M., Reinsel, G.C.: Time Series Analysis. Wiley, Hoboken (2008)

    Book  MATH  Google Scholar 

  4. Martin, V., Hurn, S., Harris, D.: Econometric Modelling with Time Series, Specification Estimation and Testing. Cambridge University Press, Cambridge (2013)

    MATH  Google Scholar 

  5. Mills, T.C., Markellos, R.N.: The Econometric Modelling of Financial Time Series. Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

  6. Chiu, C.-W.J., Harris, R., Stoja, E., Chin, M.: Financial market volatility, macroeconomic fundamentals and investor sentiment. Bank of England. Staff Working Paper No. 608 (2016)

    Google Scholar 

  7. Subbotin, A.V.: Volatility models: from conditional heteroskedasticity to cascades at multiple horizons. Appl. Econom. 15(3), 94–138 (2009)

    Google Scholar 

  8. Leucht, A., Kreiss, J.-P., Neumann, M.H.: A model specification test for GARCH(1,1) processes. Scand. J. Statist. 42(4), 1167–1193 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Barunik, J., Krehlik, T., Vacha, L.: Modelling and forecasting exchange rate volatility in time-frequency domain. Eur. J. Oper. Res. 251(1), 329–340 (2016). https://doi.org/10.1016/j.ejor.2015.12.010

    Article  MATH  Google Scholar 

  10. Panda, P., Deo, M.: Asymmetric and volatility spillover between stock market and foreign exchange market: Indian experience. IUP J. Appl. Financ. 20(4), 69–82 (2014)

    Google Scholar 

  11. Birau, R., Trivedi, J., Antonescu, M.: Modeling S&P bombay stock eschange BAHKEX index volatility patterns using GARCH model. Procedia Econ. Financ. 32, 520–525 (2015). https://doi.org/10.1016/S2212-5671(15)01427-6

    Article  Google Scholar 

  12. Harvey, A., Lange, R.-J.: Modeling the Interactions Between Volatility and Returns. Cambridge Working Papers in Economics. CWPE 1518. https://doi.org/10.17863/cam.5703

  13. Lu, X., Que, D., Cao, G.: Volatility forecast based on hybrid artificial neural network and GARCH-type models. Procedia Comput. Sci. 91, 1044–1049 (2016). https://doi.org/10.1016/j.procs.2016.07.145

    Article  Google Scholar 

  14. Efimova, O., Serletis, A.: Energy markets volatility modelling using GARCH. Energy Econ. 43, 264–273 (2014)

    Article  Google Scholar 

  15. Vejendla, A., Enke, D.: Evaluation of GARCH, RNN and FNN models for forecasting volatility in the financial markets. IUP J. Financ. Risk Manag. 10(1), 41–49 (2013)

    Google Scholar 

  16. Babalos, V., Caporale, G.M., Spagnolo, N.: Equity fund flows and stock market returns in the US before and after the global financial crisis: a VAR-GARCH-in-mean analysis. In: Economics and Finance Working Paper Series, Working Paper No. 16–12. Brunel University London, Department of Economics and Finance, June 2016. https://www.brunel.ac.uk/__data/assets/pdf_file/0009/478314/1612.pdf

  17. Kumari, J., Hiremath, G.S.: Determinants of idiosyncratic volatility: evidence from the Indian stock market. Res. Int. Bus. Financ. 41, 172–184 (2017). https://doi.org/10.1016/j.ribaf.2017.04.022

    Article  Google Scholar 

  18. Walther, T.: Expected shortfall in the presence of asymmetry and long memory. an application to vietnamese stock markets. Pac. Acc. Rev. 29(2), 132–151 (2017). https://doi.org/10.1108/PAR-06-2016-0063

    Google Scholar 

  19. Sharma, P., Vipul: Forecasting stock index volatility with GARCH models: international evidence. Stud. Econ. Financ. 32(4), 445–463 (2015). https://doi.org/10.1108/sef-11-2014-0212

  20. Vasudevan, R.D., Vetrivel, S.C.: Forecasting stock market volatility using GARCH models: evidence from the Indian stock market. Asian J. Res. Soc. Sci. Humanit. 6(8), 1565–1574 (2016). https://doi.org/10.5958/2249-7315.2016.00694.8

    Google Scholar 

  21. AL-Najjar, D.: Modelling and estimation of volatility using ARCH/GARCH models in Jordan’s stock market. Asian J. Financ. Acc. 8(1), 152–167 (2016). https://doi.org/10.5296/ajfa.v8i1.9129

    Article  Google Scholar 

  22. Innocent, N., Mung’atu, J.K.: Modeling time-varying variance-covariance for exchange rate using multivariate GARCH model. Int. J. Thesis Proj. Diss. 4(2), 49–65 (2016)

    Google Scholar 

  23. Spulbar, C., Nitoi, M.: The impact of political and economic news on the EURO/RON exchange rate: a GARCH approach. Annals of the ‘Constantin Brâncuşi’ University of Târgu Jiu, Economy Series 4, 52–58 (2012)

    Google Scholar 

  24. Renfro, C.G.: The Practice of Econometric Theory: An Examination of the Characteristics of Econometric Computation. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-75571-5

    Book  MATH  Google Scholar 

  25. Renfro, C.G.: A compendium of existing econometric software packages. J. Econ. Soc. Meas. 29, 359–409 (2009)

    Google Scholar 

  26. Ooms, M., Doornik, J.A.: Econometric software development: past, present and future. Stat. Neerl. 60(2), 206–224 (2006). https://doi.org/10.1111/j.1467-9574.2006.00317.x

    Article  MathSciNet  MATH  Google Scholar 

  27. Liboschik, T., Fokianos, K., Fried, R.: tscount: an R package for analysis of count time series following generalized linear models. Vignette of R package tscount version 1.3.0 (2015)

    Google Scholar 

  28. Ranganatham, M., Madhumati, R.: Investment Analysis and Portfolio Management. Pearson Education (Singapore) Pte. Ltd., Singapore (2005)

    Google Scholar 

  29. Engle, R.: Autoregressive conditional heteroscedasticity with estamates of the variance of United Kingdom inflation. Econometrica 50(4), 987–1008 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  30. Bollerslev, T.: Generalized autoregressive conditional heteroskedasticity. J. Econom. 31, 307–327 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  31. Minelli, M., Chambers, M., Dhiraj, A.: Big Data Technology, in Big Data, Big Analytics: Emerging Business Intelligence and Analytic Trends for Today’s Businesses. Wiley, Hoboken (2013)

    Book  Google Scholar 

  32. Google Trends. https://www.google.com/trends/explore?date=all&q=%2Fm%2F0212jm,EViews,gretl&hl=en-US

  33. Gnu Regression Econometrics and Time-Series Library. http://gretl.sourceforge.net/

  34. EViews 9.5 Feature List. http://www.EViews.com/EViews9/ev9features.html

  35. Le, T.S.: Statistical&Programming Features of R. https://www.linkedin.com/pulse/statistical-programming-features-r-thiensi-le

  36. Google Finance. https://www.google.com/finance/historical?q=WSE:WIG&ei=98ZNU6CMMMPJsQfdOQ

  37. Matei, M.: Assessing volatility forecasting models: why GARCH models take the lead. Rom. J. Econ. Forecast. 4, 42–65 (2009)

    Google Scholar 

  38. Ghalanos, A.: Introduction to the rugarch package (2015). https://cran.r-project.org/web/packages/rugarch/vignettes/Introduction_to_the_rugarch_package.pdf

  39. Fisher, T.J., Gallagher, C.M.: New weighted portmanteau statistics for time series goodness of fit testing. J. Am. Stat. Assoc. 107(498), 777–787 (2012). https://doi.org/10.1080/01621459.2012.688465

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olena Liashenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liashenko, O., Kravets, T., Krytsun, K. (2018). Software Packages for Econometrics: Financial Time Series Modeling. In: Bassiliades, N., et al. Information and Communication Technologies in Education, Research, and Industrial Applications. ICTERI 2017. Communications in Computer and Information Science, vol 826. Springer, Cham. https://doi.org/10.1007/978-3-319-76168-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76168-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76167-1

  • Online ISBN: 978-3-319-76168-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics