Nothing Special   »   [go: up one dir, main page]

Skip to main content

Developing a Self-regulation Environment in an Open Learning Model with Higher Fidelity Assessment

  • Conference paper
  • First Online:
Information and Communication Technologies in Education, Research, and Industrial Applications (ICTERI 2017)

Abstract

Automation of pedagogical interventions in Model-tracing cognitive tutors (MTCT) strongly depends on chained paradigms like a proper modeling of the knowledge involved behind the student’s actions. Knowledge is tracked for inferring its degree of mastery that convey to a constructive learning process. In this paper is presented a methodology based on a probabilistic model for generating pedagogical interventions under a self-regulated environment. The foundations for developing it are explicitly detailed up to their implementation, passing through the modeling of the cognitive and meta-cognitive student knowledge. Probabilistic model is encoded in a Bayesian network topology that increases fidelity assessment by independently diagnosing degree of mastery of the relevant knowledge components and allowing a straightforward interpretation of the knowledge involved in a student’s actions. Moreover, it is also interwoven with other processes for inferring decisions that will influence in the way pedagogical interventions are generated and promoting a self-regulated behavior. Preliminary results to assess effectiveness of the proposed approach are also presented by implementing it in a MTCT called TITUS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Paquette, L., Lebeau, J.F., Beaulieu, G., Mayers, A.: Designing a knowledge representation approach for the generation of pedagogical interventions by MTTs. Int. J. Artif. Intell. Educ. 25, 118–156 (2015)

    Article  Google Scholar 

  2. Aleven, V., Nkambou, R., Bourdeau, J., Mizoguchi, R.: Rule-based cognitive modeling for intelligent systems. In: Nkambou, R., Bourdeau, J., Mizoguchi, R. (eds.) Advances in Intelligent Tutoring Systems, pp. 33–62. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14363-2_3

    Chapter  Google Scholar 

  3. Aleven, V., McLaren, B., Roll, I., Koedinger, K.: Toward meta-cognitive tutoring: a model of help-seeking with a cognitive tutor. Int. J. Artif. Intell. Educ. 16, 101–130 (2016)

    Google Scholar 

  4. Wieber, F., Thürmer, J.L., Gollwitzer, P.M.: Promoting the translation of intentions into action by implementation of intentions: behavioral effects and physiological correlates. Front. Hum. Neurosci. 9, 395 (2015). https://doi.org/10.3389/fnhum.2015.00395

    Article  Google Scholar 

  5. Long, Y., Aleven, V.: Active learners: redesigning an intelligent tutoring system to support self-regulated learning. In: Hernández-Leo, D., Ley, T., Klamma, R., Harrer, A. (eds.) EC-TEL 2013. LNCS, vol. 8095, pp. 490–495. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40814-4_44

    Chapter  Google Scholar 

  6. Pelánek, R., Jarusek, P.: Student modeling based on problem solving time. Int. J. Artif. Intell. Educ. 25, 493–519 (2015)

    Article  Google Scholar 

  7. Conati, C., Gertner, A., VanLehn, K.: Using Bayesian networks to manage uncertainty in student modeling. User Model. User-Adap. Inter. 12, 371–417 (2002)

    Article  MATH  Google Scholar 

  8. VanLehn, K.: Intelligent tutoring systems for continuous, embedded assessment. In: Dwyer, C. (ed.) The Future of Assessment: Shaping Teaching and Learning, pp. 113–138. Lawrence Erlbaum Associates, New York (2008)

    Google Scholar 

  9. VanLehn, K., Burleson, W., Girard, S., Chavez-Echeagaray, M.E., Gonzalez-Sanchez, J., Hidalgo-Pontet, Y., Zhang, L.: The affective meta-tutoring project: lessons learned. In: Trausan-Matu, S., Boyer, K.E., Crosby, M., Panourgia, K. (eds.) ITS 2014. LNCS, vol. 8474, pp. 84–93. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07221-0_11

    Chapter  Google Scholar 

  10. Martinez Bastida, J.P., Chukhray, A.G.: An active diagnostic algorithm for a gyroscopic sensors unit. In: 2016 II International Young Scientists Forum on Applied Physics and Engineering (YSF), pp. 29–32, Kharkiv (2016). https://doi.org/10.1109/ysf.2016.7753793

  11. Kulik, A.S.: Fault diagnosis in dynamic systems via signal-parametric approach. In: IFAC/IMACS Symposium of Fault Detection, Supervision and a Technical Process, SAFE PROCESS 1991, vol. 1, pp. 157–162, Baden-Baden (1991)

    Google Scholar 

  12. VanLehn, K., Burleson, W., Chavez Echeagaray, M.E., Christopherson, R., Gonzalez Sanchez, J., Hastings, J., Hidalgo Pontet Y., Zhang, L.: The affective meta-tutoring project: how to motivate students to use effective meta-cognitive strategies. In: Proceedings of the 19th International Conference on Computers in Education, ICCE 2011, Chian Mai, Thailand, pp. 128–130 (2011)

    Google Scholar 

  13. Aleven, V.: Rule-based cognitive modeling for intelligent systems. In: Nkambou, R., Bourdeau, J., Mizoguchi, R. (eds.) Advances in Intelligent Tutoring Systems, pp. 33–62. (2010)

    Google Scholar 

  14. Russel, S., Norving, P.: Artificial Intelligence: A Modern Approach. Prentice Hall, USA (2010). 1132 p.

    Google Scholar 

  15. Arroyo, I., Woolf, B.P., Burelson, W., Muldner, K., Rai, D., Tai, M.: A multimedia adaptive tutoring system for mathematics that addresses cognition, metacognition and affect. Int. J. Artif. Intell. Educ. 24, 387–426 (2014). https://doi.org/10.1007/s40593-014-0023-y

    Article  Google Scholar 

  16. Walker, E., Rummel, N., Koedinger, K.R.: Adaptive intelligent support to improve peer tutoring in algebra. Int. J. Artif. Intell. Educ. 24, 33–61 (2014). https://doi.org/10.1007/s40593-013-0001-9

    Article  Google Scholar 

  17. Dzikovska, M., Steinhauser, N., Farrow, E., Moore, J., Campbell, G.: BEETLE II: deep natural language understanding and automatic feedback generation for intelligent tutoring in basic electricity and electronics. Int. J. Artif. Intell. Educ. 24, 284–332 (2014). https://doi.org/10.1007/s40593-014-0017-9

    Article  Google Scholar 

  18. Biswas, G., Segedy, J.R., Bunchongchit, K.: From design to implementation to practice a learning by teaching system: Betty’s brain. J. Artif. Intell. Educ. 26, 350–364 (2016). https://doi.org/10.1007/s40593-015-0057-9

    Article  Google Scholar 

  19. Pelánek, R., Jarusek, P.: Student modeling based on problem solving times. J. Artif. Intell. Educ. 25, 493–519 (2015). https://doi.org/10.1007/s40593-015-0048-x

    Article  Google Scholar 

  20. Shanabrook, D.H., Arroyo, I., Woolf, B.P., Burleson, W.: Visualization of student activity patterns within intelligent tutoring systems. In: Cerri, S.A., Clancey, W.J., Papadourakis, G., Panourgia, K. (eds.) ITS 2012. LNCS, vol. 7315, pp. 46–51. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30950-2_6

    Chapter  Google Scholar 

  21. Chi, M., VanLehn, K., Litman, D.: Do micro-level tutorial decisions matter: applying reinforcement learning to induce pedagogical tutorial tactics. In: Aleven, V., Kay, J., Mostow, J. (eds.) ITS 2010. LNCS, vol. 6094, pp. 224–234. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13388-6_27

    Chapter  Google Scholar 

  22. Wang, Y., Heffernan, N.: Leveraging first response time into the knowledge tracing model. In: Proceedings of the International Conference on Educational Data Mining, pp. 176–179. (2012)

    Google Scholar 

  23. Chukhray, A.G.: Methodology for learning algorithms, monography. National Aerospace University, KhAI, Kharkiv, Ukraine, 336 p. ISBN 978–966-662-548-2 (2013)

    Google Scholar 

  24. Decision Systems Laboratory GeNIe 2.0. Decision Systems Laboratory, University of Pittsburg (2013). http://genie.sis.pitt.edu

  25. Anderson, J.R., Corbett, A.T., Koedinger, K.R., Pelletier, R.: Cognitive tutors: lessons learned. J. Learn. Sci. 4(2), 167–207 (1995)

    Article  Google Scholar 

  26. Bessing, S.B., Gilbert, S.B., Ourada, S., Ritter, S.: Authoring model-tracing cognitive tutors. Int. J. Artif. Intell. Educ. 19, 189–210 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Pablo Martínez Bastida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Martínez Bastida, J.P., Havrykenko, O., Chukhray, A. (2018). Developing a Self-regulation Environment in an Open Learning Model with Higher Fidelity Assessment. In: Bassiliades, N., et al. Information and Communication Technologies in Education, Research, and Industrial Applications. ICTERI 2017. Communications in Computer and Information Science, vol 826. Springer, Cham. https://doi.org/10.1007/978-3-319-76168-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76168-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76167-1

  • Online ISBN: 978-3-319-76168-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics