Nothing Special   »   [go: up one dir, main page]

Skip to main content

Simulation Agent-Based Model of Heterogeneous Firms Through Software Module

  • Conference paper
  • First Online:
Information and Communication Technologies in Education, Research, and Industrial Applications (ICTERI 2017)

Abstract

Research goals and objectives: study of the simplest agent-based model with heterogeneous firms using a software module.

Object of research: microeconomics system with heterogeneous agents.

Subject of research: agent-based model of microeconomic system with different types, equilibrium and disequilibrium states of the systems with specially developed desktop application.

Research methods: optimization methods, bifurcation analysis, stability analysis, simulation methods, game theory.

Results of the research: a market moves from stability to dynamic chaos with an increase in number of firms provided the firms have heterogeneous types. If no less than two-thirds of firms use naive expectations, the state of dynamic chaos will also appears in the market. The crucial factor which ensures market stability is the adaptive approach of firms’ competitive strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Schulz, A.W.: Beyond the hype: the value of evolutionary theorizing in economics. Philos. Soc. Sci. 43(1), 46–72 (2013)

    Article  Google Scholar 

  2. Andreeva, E.L., Myslyakova, Y.G., Karkh, D.A.: Evolution of social responsibility of economic entities. In: 3rd International Multidisciplinary Scientific Conference on Social Sciences and Arts, pp. 237–244. SGEM, Albena (2016)

    Google Scholar 

  3. Lehmann, L., Alger, I., Weibull, J.: Does evolution lead to maximizing behavior? Evolution 69(7), 1858–1873 (2015)

    Article  Google Scholar 

  4. Marsay, D.: Decision-making under radical uncertainty: an interpretation of Keynes’ treatise. Econ.-Open Access Open-Assess. e-J. 10, 219–326 (2016)

    Google Scholar 

  5. Baiardi, L.C., Lamantia, F.G., Radi, D.: Evolutionary competition between boundedly rational behavioral rules in oligopoly games. Chaos Solitons Fractals 79, 204–225 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Peng, Y., Lua, Q., Xiaoa, Y.: A dynamic Stackelberg duopoly model with different strategies. Chaos Solitons Fractals 85, 128–134 (2016)

    Article  MathSciNet  Google Scholar 

  7. Kobets, V., Weissblut, A.: Nonlinear dynamic model of a microeconomic system with different reciprocity and expectations types of firms: stability and bifurcations. In: CEUR Workshop Proceedings, vol. 1614, pp. 502–517 (Indexed by: Sci Verse Scopus, DBLP, Google Scholar) (2016). http://ceur-ws.org/Vol-1614/paper_90.pdf

  8. Wu, W., Chen, Z., Ip, W.H.: Complex nonlinear dynamics and controlling chaos in a Cournot duopoly economic model. Nonlinear Anal.: Real World Appl. 11, 4363–4377 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Agliaria, A., Naimzada, A.K., Pecora, N.: Nonlinear dynamics of a Cournot duopoly game with differentiated products. Appl. Math. Comput. 281, 1–15 (2016)

    MathSciNet  Google Scholar 

  10. Kobets, V., Weissblut, A.: Mathematical model of microeconomic system with different social responsibilities in software module. In: CEUR Workshop Proceedings, vol. 1844, pp. 502–517 (Indexed by: Sci Verse Scopus, DBLP, Google Scholar) (2017). http://ceur-ws.org/Vol-1844/10000139.pdf

  11. Federici, D., Gandolfo, G.: Chaos in economics. J. Econ. Dev. Stud. 2(1), 51–79 (2014)

    Google Scholar 

  12. Ross, D.L.: The economic agent: not human, but important. In: Handbook of the Philosophy of Science. Technishe Universiteit Eindhoven, Eindhoven (2012)

    Google Scholar 

  13. Rosser, J.B., Rosser, M.V.: Simonian bounded rationality and complex behavioral economics. In: Matsumoto, A., Szidarovszky, F., Asada, T. (eds.) Essays in Economic Dynamics, pp. 3–22. Springer, Singapore (2016). https://doi.org/10.1007/978-981-10-1521-2_1

    Chapter  Google Scholar 

  14. Clavien, C., Chapuisat, M.: Altruism across disciplines: one word, multiple meanings. Biol. Philos. 28(1), 125–140 (2013)

    Article  Google Scholar 

  15. Chen, S.-H.: Varieties of agents in agent-based computational economics: a historical and an interdisciplinary perspective. J. Econ. Dyn. Control 36(1), 1–25 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mirowski, P.: Markets come to bits: evolution, computation and markomata in economic science. J. Econ. Behav. Organ. 63(2), 209–242 (2007)

    Article  Google Scholar 

  17. Bianchi, F., Squazzoni, F.: Agent-based models in sociology. Wiley Interdiscipl. Rev.-Comput. Stat. 7(4), 284–306 (2015)

    Article  MathSciNet  Google Scholar 

  18. Graebner, C.: Agent-based computational models - a formal heuristic for institutionalist pattern modelling? J. Inst. Econ. 12(1), 241–261 (2016)

    Google Scholar 

  19. Kobets, V., Yatsenko, V.: Adjusting business processes by the means of an autoregressive model using BPMN 2.0. In: CEUR Workshop Proceedings, vol. 1614, pp. 518–533 (Indexed by: Sci Verse Scopus, DBLP, Google Scholar) (2016). http://ceur-ws.org/Vol-1614/paper_97.pdf

  20. Kobets, V. Yatsenko, V., Poltoratskiy, M.: Dynamic model of double electronic Vickrey auction. In: Ermolayev, V., et al. (eds.) Proceedings of 11-th International Conference on ICTERI 2015, Kherson, Lviv, 14–16 May 2015, vol. 1356, pp. 236–251. CEUR-WS.org (2015). CEUR-WS.org/Vol-1356/ICTERI-2015-CEUR-WS-Volume.pdf, ISSN 1613-0073

    Google Scholar 

  21. Vermeulen, B., Pyka, A.: Agent-based modeling for decision making in economics under uncertainty. Econ.-Open Access Open-Assess. e-J. 10, 43–54 (2016)

    Google Scholar 

  22. Greenwood-Lee, J., Hawe, P., Nettel-Aguirre, A.: Complex intervention modelling should capture the dynamics of adaptation. BMC Med. Res. Methodol. 16, 52–64 (2016)

    Article  Google Scholar 

  23. Mandel, A., Gintis, H.: Decentralized Pricing and the equivalence between Nash and Walrasian equilibrium. J. Math. Econ. 63, 84–92 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Guse, E.A.: Heterogeneous expectations, adaptive learning, and evolutionary dynamics. J. Econ. Behav. Org. 74(1-2). 42–57 (2010)

    Google Scholar 

  25. Todd, A., Beling, P., Scherer, W., Yang, S.Y.: Agent-based financial markets: a review of the methodology and domain. In: 2016 IEEE Symposium Series on Computational Intelligence (SSCI) (2016)

    Google Scholar 

  26. Wood, A.D., Mason, C.F., Finnoff, D.: OPEC, the Seven Sisters, and oil market dominance: an evolutionary game theory and agent-based modeling approach. J. Econ. Behav. Organ. 132, 66–78 (2016)

    Article  Google Scholar 

  27. Luis Santos, J., Mancha Navarro, T., Pablo-Marti, F.: An evolutionary simulation model of the effect of innovation and firm dynamics on market power. Int. J. Appl. Behav. Econ. 5(3), 31–49 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitaliy Kobets .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kobets, V., Weissblut, A. (2018). Simulation Agent-Based Model of Heterogeneous Firms Through Software Module. In: Bassiliades, N., et al. Information and Communication Technologies in Education, Research, and Industrial Applications. ICTERI 2017. Communications in Computer and Information Science, vol 826. Springer, Cham. https://doi.org/10.1007/978-3-319-76168-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76168-8_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76167-1

  • Online ISBN: 978-3-319-76168-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics