Nothing Special   »   [go: up one dir, main page]

Skip to main content

Genetic-Based Decoder for Statistical Machine Translation

  • Conference paper
  • First Online:
Computational Linguistics and Intelligent Text Processing (CICLing 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9624))

  • 1202 Accesses

Abstract

We propose a new algorithm for decoding on machine translation process. This approach is based on an evolutionary algorithm. We hope that this new method will constitute an alternative to Moses’s decoder which is based on a beam search algorithm while the one we propose is based on the optimisation of a total solution. The results achieved are very encouraging in terms of measures and the proposed translations themselves are well built.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Berger, A.L., Brown, P.F., Della Pietra, S.A., Della Pietra, V.J., Gillett, J.R., Lafferty, J.D., Mercer, R.L., Printz, H., Ures, L.: The candide system for machine translation. In: HLT 1994 Proceedings of the Workshop on Human Language Technology, pp. 157–162 (1994)

    Google Scholar 

  2. Bertoldi, N., Haddow, B., Fouet, J.-B.: Improved minimum error rate training in Moses. Prague Bull. Math. Linguist. 91, 7–16 (2009)

    Article  Google Scholar 

  3. Binitha, S., Siva Sathya, S.: A survey of bio inspired optimization algorithms. Int. J. Soft Comput. Eng. (IJSCE), 2231–2307 (2012)

    Google Scholar 

  4. Bojar, O., Buck, C., Federmann, C., Haddow, B., Koehn, P., Leveling, J., Monz, C., Pecina, P., Post, M., Saint-Amand, H., Soricut, R., Specia, L., Tamchyna, A.: Findings of the 2014 workshop on statistical machine translation. In: ACL NINTH Workshop on Statistical Machine Translation (2014)

    Google Scholar 

  5. Brown, P.F., Della Pietra, V.J., Della Pietra, S.A., Mercer, R.L.: The mathematics of statistical machine translation: parameter estimation. Comput. Linguist. 19, 263–311 (1993)

    Google Scholar 

  6. Črepinšek, M., Liu, S.-H., Mernik, M.: Exploration and exploitation in evolutionary algorithms: a survey. ACM Comput. Surv. (CSUR) 45(3), 35 (2013)

    MATH  Google Scholar 

  7. Echizen-ya, H., Araki, K., Momouchi, Y., Tochinai, K.: Machine translation method using inductive learning with genetic algorithms. In: Conference on Computational Linguistics, vol. 2, no. 16, pp. 1020–1023 (1996)

    Google Scholar 

  8. Germann, U., Jahr, M., Knight, K., Marcu, D., Yamada, K.: Fast decoding and optimal decoding for machine translation. Artif. Intell. 154, 127–143 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Koehn, P.: A beam search decoder for phrase-based statistical machine translation models. In: Conference of the Association for Machine Translation in the Americas, AMTA, pp. 115–124 (2004)

    Google Scholar 

  10. Koehn, P., Hoang, H., Birch, A., Callison-Burch, C., Federico, M., Bertoldi, N., Cowan, B., Shen, W., Moran, C., Zens, R., Dyer, C., Bojar, O., Constantin, A., Herbst, E.: Moses: open source toolkit for statistical machine translation. In: ACL 2007 Proceedings of the 45th Annual Meeting of the ACL, pp. 177–180 (2007)

    Google Scholar 

  11. Koehn, P., Och, F.J., Marcu, D.: Statistical phrase-based translation. In: NAACL 2003 Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology, pp. 48–54 (2003)

    Google Scholar 

  12. Langlais, P., Patry, A., Gotti, A.: A greedy decoder for phrase-based statistical machine translation. In: Proceedings of TMI (2007)

    Google Scholar 

  13. Och, F.J., Ney, H.: A systematic comparison of various statistical alignment models. Comput. Linguist. 21, 19–51 (2003)

    Article  MATH  Google Scholar 

  14. Papineni, K., Roukos, S., Ward, T., Zhu, W.-J.: BLEU: a method for automatic evaluation of machine translation. In: ACL 2002 Proceedings of the 40th Annual Meeting on Association for Computational Linguistics, pp. 311–318 (2002)

    Google Scholar 

  15. Raybaud, S., Langlois, D., Smaili, K.: ‘This sentence is wrong’. Detecting errors in machine-translated sentences. Mach. Transl. 25, 1–34 (2011)

    Article  Google Scholar 

  16. Snover, M., Dorr, B., Schwartz, R., et al.: A study of translation edit rate with targeted human annotation. In: Proceedings of the Association for Machine Translation in the Americas, pp. 223–231 (2006)

    Google Scholar 

  17. Stolcke, A., Zheng, J., Wang, W., Abrash, V.: SRILM at sixteen: update and outlook. In: Proceedings of IEEE Automatic Speech Recognition and Understanding Workshop, p. 5 (2011)

    Google Scholar 

  18. Zens, R., Och, F.J., Ney, H.: Phrase-based statistical machine translation. In: Jarke, M., Lakemeyer, G., Koehler, J. (eds.) KI 2002. LNCS (LNAI), vol. 2479, pp. 18–32. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45751-8_2

    Chapter  Google Scholar 

  19. Zogheib, A.: Genetic algorithm-based multi-word automatic language translation. Recent Adv. Intell. Inf. Syst. 751–760 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Douib Ameur , Langlois David or Smaïli Kamel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ameur, D., David, L., Kamel, S. (2018). Genetic-Based Decoder for Statistical Machine Translation. In: Gelbukh, A. (eds) Computational Linguistics and Intelligent Text Processing. CICLing 2016. Lecture Notes in Computer Science(), vol 9624. Springer, Cham. https://doi.org/10.1007/978-3-319-75487-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75487-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75486-4

  • Online ISBN: 978-3-319-75487-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics