Abstract
We propose a new algorithm for decoding on machine translation process. This approach is based on an evolutionary algorithm. We hope that this new method will constitute an alternative to Moses’s decoder which is based on a beam search algorithm while the one we propose is based on the optimisation of a total solution. The results achieved are very encouraging in terms of measures and the proposed translations themselves are well built.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Berger, A.L., Brown, P.F., Della Pietra, S.A., Della Pietra, V.J., Gillett, J.R., Lafferty, J.D., Mercer, R.L., Printz, H., Ures, L.: The candide system for machine translation. In: HLT 1994 Proceedings of the Workshop on Human Language Technology, pp. 157–162 (1994)
Bertoldi, N., Haddow, B., Fouet, J.-B.: Improved minimum error rate training in Moses. Prague Bull. Math. Linguist. 91, 7–16 (2009)
Binitha, S., Siva Sathya, S.: A survey of bio inspired optimization algorithms. Int. J. Soft Comput. Eng. (IJSCE), 2231–2307 (2012)
Bojar, O., Buck, C., Federmann, C., Haddow, B., Koehn, P., Leveling, J., Monz, C., Pecina, P., Post, M., Saint-Amand, H., Soricut, R., Specia, L., Tamchyna, A.: Findings of the 2014 workshop on statistical machine translation. In: ACL NINTH Workshop on Statistical Machine Translation (2014)
Brown, P.F., Della Pietra, V.J., Della Pietra, S.A., Mercer, R.L.: The mathematics of statistical machine translation: parameter estimation. Comput. Linguist. 19, 263–311 (1993)
Črepinšek, M., Liu, S.-H., Mernik, M.: Exploration and exploitation in evolutionary algorithms: a survey. ACM Comput. Surv. (CSUR) 45(3), 35 (2013)
Echizen-ya, H., Araki, K., Momouchi, Y., Tochinai, K.: Machine translation method using inductive learning with genetic algorithms. In: Conference on Computational Linguistics, vol. 2, no. 16, pp. 1020–1023 (1996)
Germann, U., Jahr, M., Knight, K., Marcu, D., Yamada, K.: Fast decoding and optimal decoding for machine translation. Artif. Intell. 154, 127–143 (2004)
Koehn, P.: A beam search decoder for phrase-based statistical machine translation models. In: Conference of the Association for Machine Translation in the Americas, AMTA, pp. 115–124 (2004)
Koehn, P., Hoang, H., Birch, A., Callison-Burch, C., Federico, M., Bertoldi, N., Cowan, B., Shen, W., Moran, C., Zens, R., Dyer, C., Bojar, O., Constantin, A., Herbst, E.: Moses: open source toolkit for statistical machine translation. In: ACL 2007 Proceedings of the 45th Annual Meeting of the ACL, pp. 177–180 (2007)
Koehn, P., Och, F.J., Marcu, D.: Statistical phrase-based translation. In: NAACL 2003 Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology, pp. 48–54 (2003)
Langlais, P., Patry, A., Gotti, A.: A greedy decoder for phrase-based statistical machine translation. In: Proceedings of TMI (2007)
Och, F.J., Ney, H.: A systematic comparison of various statistical alignment models. Comput. Linguist. 21, 19–51 (2003)
Papineni, K., Roukos, S., Ward, T., Zhu, W.-J.: BLEU: a method for automatic evaluation of machine translation. In: ACL 2002 Proceedings of the 40th Annual Meeting on Association for Computational Linguistics, pp. 311–318 (2002)
Raybaud, S., Langlois, D., Smaili, K.: ‘This sentence is wrong’. Detecting errors in machine-translated sentences. Mach. Transl. 25, 1–34 (2011)
Snover, M., Dorr, B., Schwartz, R., et al.: A study of translation edit rate with targeted human annotation. In: Proceedings of the Association for Machine Translation in the Americas, pp. 223–231 (2006)
Stolcke, A., Zheng, J., Wang, W., Abrash, V.: SRILM at sixteen: update and outlook. In: Proceedings of IEEE Automatic Speech Recognition and Understanding Workshop, p. 5 (2011)
Zens, R., Och, F.J., Ney, H.: Phrase-based statistical machine translation. In: Jarke, M., Lakemeyer, G., Koehler, J. (eds.) KI 2002. LNCS (LNAI), vol. 2479, pp. 18–32. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45751-8_2
Zogheib, A.: Genetic algorithm-based multi-word automatic language translation. Recent Adv. Intell. Inf. Syst. 751–760 (2011)
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Ameur, D., David, L., Kamel, S. (2018). Genetic-Based Decoder for Statistical Machine Translation. In: Gelbukh, A. (eds) Computational Linguistics and Intelligent Text Processing. CICLing 2016. Lecture Notes in Computer Science(), vol 9624. Springer, Cham. https://doi.org/10.1007/978-3-319-75487-1_9
Download citation
DOI: https://doi.org/10.1007/978-3-319-75487-1_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-75486-4
Online ISBN: 978-3-319-75487-1
eBook Packages: Computer ScienceComputer Science (R0)