Nothing Special   »   [go: up one dir, main page]

Skip to main content

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 361))

Abstract

Industrial applications often face elaborated problems. In order to solve them properly a great deal of complexity and data diversity has to be managed. In this paper we present a planning system that is used globally by the Volkswagen Group. We introduce the specific challenges that this industrial application faces, namely a high complexity paired with diverse heterogeneous data sources, and describe how the problem has been modelled and solved. We further introduce the core technology we used, the revision of Markov networks. We further motivate the need to handle planning inconsistencies and present our framework consisting of six main components: Prevention, Detection, Analysis, Explanation, Manual Resolution, and Automatic Elimination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. R. Kruse et al., Computational Intelligence, A Methodological Introduction, 2nd edn. (Springer, London, 2016)

    MATH  Google Scholar 

  2. J. Whittaker, Graphical Models in Applied Multivariate Statistics (Wiley, Chichester, 1990)

    MATH  Google Scholar 

  3. J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference (Morgan Kaufmann, 1991)

    Google Scholar 

  4. D. Koller, N. Friedman, Probabilistic Graphical Models: Principles and Techniques (MIT Press, Cambridge, Mass, 2009)

    MATH  Google Scholar 

  5. C. Borgelt, M. Steinbrecher, R. Kruse, Graphical Models: Representations for Learning, Reasoning and Data Mining, 2nd edn. (Wiley, Wiley Series in Computational Statistics, 2009)

    Book  Google Scholar 

  6. J. Gebhardt, R. Kruse, Background to and perspectives of possibilistic graphical models, in Applications of Uncertainty Formalisms, ed. by A. Hunter, S. Parsons (Springer, Berlin, Heidelberg, 1998), pp. 397–415

    Chapter  Google Scholar 

  7. C. Borgelt, J. Gebhardt, R. Kruse, Possibilistic graphical models, in Computational Intelligence in Data Mining, ISSEK’98 (Udine, Italy), ed. by G.D. Riccia, R. Kruse, H.-J. Lenz (Springer, Wien, 2000), pp. 51–68

    Chapter  Google Scholar 

  8. J. Gebhardt, R. Kruse, Learning possibilistic networks from data, in Learning from Data, Artificial Intelligence and Statistics 5, ed. by D. Fisher, H. Lenz. Lecture Notes in Statistics, vol. 112 (Springer, New York, 1996), pp. 143–153

    Chapter  Google Scholar 

  9. B. Amor, Possibilistic graphical models: from reasoning to decision making, in Fuzzy Logic and Applications: 10th International Workshop, WILF, 2013, Genoa, Italy, November 19–22, 2013. Proceedings, ed. by F. Masulli, G. Pasi, R. Yager (Springer International Publishing, Cham, 2013), pp. 86–99

    Google Scholar 

  10. L.E. Sucar, Relational Probabilistic Graphical Model. (Springer, London, 2015), pp. 219–235

    Chapter  Google Scholar 

  11. L. Getoor, B. Taskar (eds.), Introduction to Statistical Relational Learning (MIT Press, Cambridge, MA, 2007)

    MATH  Google Scholar 

  12. P. Gardenfors, Knowledge in Flux: Modeling the Dynamics of Epistemic States (MIT Press, Cambridge, Mass, 1988)

    Google Scholar 

  13. D. Gabbay, P. Smets (eds.), Handbook of Defeasable Reasoning and Uncertainty Management Systems: Belief Change, vol. 3 (Kluwer Academic Press, Dordrecht, Netherlands, 1998)

    Google Scholar 

  14. C.E. Alchourron, P.G. Ardenfors, D. Makinson, On the logic of theory change: partial meet contraction and revision functions. J. Symbol. Logic 50(02), 510–530 (1985)

    Article  MathSciNet  Google Scholar 

  15. A. Darwiche, On the logic of iterated belief revision. Artif. Intell. 89(1–2), 1–29 (1997)

    Article  MathSciNet  Google Scholar 

  16. H. Katsuno, A.O. Mendelzon, Propositional knowledge base revision and minimal change. Artif. Intell. 52(3), 263–294 (1991)

    Article  MathSciNet  Google Scholar 

  17. D. Gabbay, Controlled revision—an algorithmic approach for belief revision. J. Logic Comput. 13(1), 3–22 (2003)

    Article  MathSciNet  Google Scholar 

  18. B. Nebel, Base revision operations and schemes: representation, semantics and complexity, in Proceedings of the Eleventh European Conference on Artificial Intelligence (ECAI94) (Wiley, Amsterdam, The Netherlands, 1994), pp. 341–345

    Google Scholar 

  19. J. Gebhardt, H. Detmer, A.L. Madsen, Predicting parts demand in the automotive industry—an application of probabilistic graphical models, in Proceedings 19th International Joint Conference on Uncertainty in Artificial Intelligence (Acapulco, 2003)

    Google Scholar 

  20. J. Gebhardt, A. Klose, H. Detmer, F. Ruegheimer, R. Kruse, Graphical models for industrial planning on complex domains, in Decision Theory and Multi-Agent Planning, ser. CISM Courses and Lectures, ed. by G. Della, D. Riccia, Dubois, R. Kruse, H.-J. Lenz, vol. 482 (Springer, 2006), pp. 131–143

    Google Scholar 

  21. Y.W. Teh, M. Welling, On improving the efficiency of the iterative proportional fitting procedure, in Proceedings of the 9th international Workshop on Artificial Intelligence and Statistics in Key West, Florida, ed. by C.M. Bishop, B.J. Frey (2003), pp. 1–8

    Google Scholar 

  22. F. Pukelsheim, B. Simeone, On the iterative proportional fitting procedure: structure of accumulation points and L1-error analysis, in Structure, vol. 05 (2009), p. 28

    Google Scholar 

  23. F. Schmidt, J. Wendler, J. Gebhardt, R. Kruse, Handling inconsistencies in the revision of probability distributions, in Hybrid Artificial Intelligent Systems: 8th International Conference, HAIS 2013, Salamanca, Spain, September 11–13, 2013. Proceedings, ed. by J.-S. Pan, M.M. Polycarpou, M. Wozniak, L.F. de Carvalho, H. Quinti´an, E. Corchado (Springer, Berlin, Heidelberg, 2013), pp. 598–607

    Google Scholar 

  24. J. Gebhardt, A. Klose, J. Wendler, Markov network revision: on the handling of inconsistencies, in Computational Intelligence in Intelligent Data Analysis, ser. Studies in Computational Intelligence, ed. by C. Moewes, A. Nurnberger, vol. 445 (Springer, Berlin, Heidelberg, 2012), pp. 153–165

    Chapter  Google Scholar 

  25. J. Gebhardt, C. Borgelt, R. Kruse, H. Detmer, Knowledge revision in Markov networks. Math. Soft Comput. 11(2–3), 93–107 (2004)

    MathSciNet  MATH  Google Scholar 

  26. F. Schmidt, J. Gebhardt, R. Kruse, Handling revision inconsistencies: creating useful explanations, in HICSS-48, Proceedings, 5–8 January 2015, Koloa, Kauai, HI, USA, ed. by T.X. Bui, R.H. Sprague (IEEE Computer Society, 2015), pp. 1–8

    Google Scholar 

  27. A. Hunter, S. Konieczny et al., Measuring inconsistency through minimal inconsistent sets, in Proceedings of the Eleventh International Conference on Principles of Knowledge Representation and Reasoning (Sydney, Australia, 2008), pp. 358–366

    Google Scholar 

  28. K. Mu, W. Liu, Z. Jin, A general framework for measuring inconsistency through minimal inconsistent sets. Knowl. Inf. Syst. 27(1), 85–114 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabian Schmidt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schmidt, F., Gebhardt, J., Kruse, R. (2018). Decomposable Graphical Models on Learning, Fusion and Revision. In: Zadeh, L., Yager, R., Shahbazova, S., Reformat, M., Kreinovich, V. (eds) Recent Developments and the New Direction in Soft-Computing Foundations and Applications. Studies in Fuzziness and Soft Computing, vol 361. Springer, Cham. https://doi.org/10.1007/978-3-319-75408-6_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75408-6_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75407-9

  • Online ISBN: 978-3-319-75408-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics