Nothing Special   »   [go: up one dir, main page]

Skip to main content

Using Ontologies for Official Statistics: The Istat Experience

  • Conference paper
  • First Online:
Current Trends in Web Engineering (ICWE 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10544))

Included in the following conference series:

  • 2229 Accesses

Abstract

In this paper, we illustrate some experiences by the Italian National Institute of Statistics (Istat) on using ontologies for the purpose of both data integration and data dissemination. The shown data integration project is based on the Ontology Based Data Management (OBDM) paradigm, proposed for integrating multiple and heterogeneous data sources. The dissemination experience exploits the Linked Data paradigm and led to the publication of the Istat’s Linked Open Data portal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lenzerini, M.: Ontology-based data management. In: Proceedings of the 20th International Conference on Information and Knowledge Management (CIKM 2011), pp. 5–6 (2011)

    Google Scholar 

  2. Graphol. http://www.dis.uniroma1.it/~graphol

  3. Console, M., Lembo, D., Santarelli, V., Savo, D.F.: Graphol: ontology representation through diagrams. In: Proceedings of the 27th International Workshop on Description Logic (2014)

    Google Scholar 

  4. Linked Data. http://linkeddata.org/

  5. Aracri, R., De Francisci, S., Pagano, A., Scannapieco, M., Tosco, L., Valentino, L.: Publishing the 15th Italian population and housing census in linked open data. In: The Proceedings of the 2nd International Workshop on Semantic Statistics (2014)

    Google Scholar 

  6. Ontology Web Language (OWL), 10 February 2004. http://www.w3.org/TR/owl-ref/

  7. Data Cube Vocabulary, 25 June 2013. http://www.w3.org/TR/2013/CR-vocab-data-cube-20130625/

  8. Simple Knowledge Organization System (SKOS), 18 August 2009. http://www.w3.org/TR/2009/REC-skos-reference-20090818/

  9. Asset Description Metadata Schema (ADMS). https://joinup.ec.europa.eu/asset/adms/home

  10. PROV Ontology, 30 April 2013. http://www.w3.org/TR/2013/NOTE-prov-overview-20130430/

  11. Lodi, G., Maccioni, A., Scannapieco, M., Scanu, M., Tosco, L.: Publishing official classification in linked open data. In: The Proceedings of the 2nd International Workshop on Semantic Statistics (2014)

    Google Scholar 

  12. Scannapieco, M., Tosco, L., Gillman, D., Dreyer, A., Duffes, G.: An OWL ontology for the generic statistical information model (GSIM): design and implementation. In: The Proceedings of the 4th International Workshop on Semantic Statistics (2016). http://ceur-ws.org/Vol-1654/article-03.pdf

  13. Cotton, F., Gillman, D.: Modeling the statistical process with linked metadata. In: The Proceedings of the 3rd International Workshop on Semantic Statistics (2015). http://ceur-ws.org/Vol-1551/article-06.pdf

  14. Dreyer, A., Duffes, G., Cotton, F.: An OWL ontology for the common statistical production architecture. In: The Proceedings of the 4th International Workshop on Semantic Statistics (2016). http://ceur-ws.org/Vol-1654/article-06.pdf

  15. IMS – Implementing ModernStats Standard Project. http://www1.unece.org/stat/platform/pages/viewpage.action?pageId=122323917

  16. Implementing ModernStats Standards Linked Open Metadata Design Guidelines. http://www1.unece.org/stat/platform/download/attachments/129172661/HLG-MOS%20-%20IMS%20Design%20Guidelines_Jan2017.docx?version=1&modificationDate=1483969944574&api=v2

  17. Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati, R.: Linking data to ontologies. J. Data Semant. 10, 133–173 (2008)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Tosco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aracri, R.M., Radini, R., Scannapieco, M., Tosco, L. (2018). Using Ontologies for Official Statistics: The Istat Experience. In: Garrigós, I., Wimmer, M. (eds) Current Trends in Web Engineering. ICWE 2017. Lecture Notes in Computer Science(), vol 10544. Springer, Cham. https://doi.org/10.1007/978-3-319-74433-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74433-9_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74432-2

  • Online ISBN: 978-3-319-74433-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics