Nothing Special   »   [go: up one dir, main page]

Skip to main content

Compositional Relational Programming with Name Projection and Compositional Synthesis

  • Conference paper
  • First Online:
Perspectives of System Informatics (PSI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10742))

Abstract

CombInduce is a methodology for inductive synthesis of logic programs, which employs a reversible meta-interpreter for synthesis, and uses a compositional relational target language for efficient synthesis of recursive predicates. The target language, Combilog, has reduced usability due to the lack of variables, a feature enforced by the principle of compositionality, which is at the core of the synthesis process. We present a revision of Combilog, namely, Combilog with Name Projection (CNP), which brings improved usability by using argument names, whilst still staying devoid of variables, preserving the compositionality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The concept of compositionality here refers to the principle of compositionality [21], where the meaning of an expression is defined as a function of meanings of its components only, and not to the concept of or-compositionality [3].

References

  1. Basin, D., Deville, Y., Flener, P., Hamfelt, A., Fischer Nilsson, J.: Synthesis of programs in computational logic. In: Bruynooghe, M., Lau, K.-K. (eds.) Program Development in Computational Logic. LNCS, vol. 3049, pp. 30–65. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-25951-0_2

    Chapter  Google Scholar 

  2. Codd, E.F.: A relational model of data for large shared data banks. Commun. ACM 13(6), 377–387 (1970)

    Article  MATH  Google Scholar 

  3. Comini, M., Levi, G., Meo, M.C.: A theory of observables for logic programs. Inf. Comput. 169(1), 23–80 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cropper, A., Tamaddoni-Nezhad, A., Muggleton, S.H.: Meta-interpretive learning of data transformation programs. In: Inoue, K., Ohwada, H., Yamamoto, A. (eds.) ILP 2015. LNCS (LNAI), vol. 9575, pp. 46–59. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40566-7_4

    Google Scholar 

  5. Curry, H.B.: Grundlagen der kombinatorischen logik. Am. J. Math. 52(3), 509–536 (1930)

    Article  MathSciNet  MATH  Google Scholar 

  6. Curry, H.B., Feys, R.: Combinatory Logic. Studies in logic and the foundations of mathematics, vol. 1. North-Holland Publishing Company, Amsterdam (1958)

    MATH  Google Scholar 

  7. Feser, J.K., Chaudhuri, S., Dillig, I.: Synthesizing data structure transformations from input-output examples. SIGPLAN Not. 50(6), 229–239 (2015)

    Article  Google Scholar 

  8. Green, T.R.G.: Cognitive dimensions of notations. In: People and Computers V, pp. 443–460 (1989)

    Google Scholar 

  9. Hamfelt, A., Nilsson, J.F.: Inductive metalogic programming. In: Proceedings Fourth International Workshop on Inductive Logic Programming, pp. 85–96. Bad Honnef/Bonn GMD-Studien Nr. 237 (1994)

    Google Scholar 

  10. Hamfelt, A., Nilsson, J.F.: Inductive logic programming with well-modedness constraints. In: Rached, E. (ed.) Proceedings of the 8th International Workshop on Functional and Logic Programming, pp. 220–231. Centre National de la Recherche Scientifique, Institut National Polytechnique de Grenoble, Universit Joseph Fourier, Laboratoire Leibniz, Institut IMAG, 1999. UMR no 5522 (1999)

    Google Scholar 

  11. Hamfelt, A., Nilsson, J.F.: Inductive synthesis of logic programs by composition of combinatory program schemes. In: Flener, P. (ed.) LOPSTR 1998. LNCS, vol. 1559, pp. 143–158. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48958-4_8

    Chapter  Google Scholar 

  12. Kneuss, E., Kuraj, I., Kuncak, V., Suter, P.: Synthesis modulo recursive functions. In: Proceedings of the 2013 ACM SIGPLAN International Conference on Object Oriented Programming Systems Languages & Applications, OOPSLA 2013, New York, pp. 407–426. ACM (2013)

    Google Scholar 

  13. Muggleton, S.H., Lin, D., Tamaddoni-Nezhad, A.: Meta-interpretive learning of higher-order dyadic datalog: predicate invention revisited. Mach. Learn. 100(1), 49–73 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Numao, M., Shimura, M.: Combinatory logic programming. In: Bruynooghe, M. (ed.) Proceedings of the 2nd Workshop on Meta-programming in Logic, pp. 123–136. K.U. Leuven, Belgium (1990)

    Google Scholar 

  15. Paçacı, G.: Representation of compositional relational programs. Ph.D. thesis, Uppsala University, Information Systems (2017)

    Google Scholar 

  16. Paçacı, G., Hamfelt, A.: Colour beads visual representation of compositional relational programs. In: Proceedings of IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC), San Jose, CA, USA, pp. 131–134 (2013)

    Google Scholar 

  17. Paçacı, G., Hamfelt, A.: A visual system for compositional relational programming. In: Proceedings of the The 23rd European Japanese Conference On Information Modelling And Knowledge Bases (EJC), Nara, Japan, 2013, pp. 235–243. IOS Press (2014)

    Google Scholar 

  18. Quine, W.V.: Predicate-functor logic. In: Fenstad, E. (ed.) Proceedings of Second Scandinavian Logic Symposium, pp. 309–315. North-Holland (1971)

    Google Scholar 

  19. Schönfinkel, M.: über die bausteine der mathematischen logik. Math. Ann. 92(3–4), 305–316 (1924)

    Article  MathSciNet  MATH  Google Scholar 

  20. Tarski, A.: On the calculus of relations. J. Symb. Log. 6(03), 73–89 (1941)

    Article  MathSciNet  MATH  Google Scholar 

  21. van Benthem, J., Ter Meulen, A.: Handbook of Logic and Language. Elsevier, Amsterdam (1996)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Görkem Paçacı .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Paçacı, G., McKeever, S., Hamfelt, A. (2018). Compositional Relational Programming with Name Projection and Compositional Synthesis. In: Petrenko, A., Voronkov, A. (eds) Perspectives of System Informatics. PSI 2017. Lecture Notes in Computer Science(), vol 10742. Springer, Cham. https://doi.org/10.1007/978-3-319-74313-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74313-4_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74312-7

  • Online ISBN: 978-3-319-74313-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics