Overview
In brief, Active Storage refers to an architectural hardware and software paradigm, based on co-location storage and compute units. Ideally, it will allow to execute application-defined data- or compute-intensive operations in situ, i.e., within (or close to) the physical data storage. Thus Active Storage seeks to minimize expensive data movement, improving performance, scalability, and resource efficiency. The effective use of Active Storage mandates new architectures, algorithms, interfaces, and development toolchains.
Over the last decade, we are witnessing a clear trend toward the fusion of the compute-intensive and the data-intensive paradigms on architectural, system, and application level. On the one hand, large computational tasks (e.g., simulations) tend to feed growing amounts of data into their complex computational models; on the other hand, database...
References
Acharya A, Uysal M, Saltz J (1998) Active disks: Programming model, algorithms and evaluation. In: Proceedings of the eighth international conference on architectural support for programming languages and operating systems, ASPLOS VIII, pp 81–91
Ahmad I, Namal S, Ylianttila M, Gurtov A (2015) Security in software defined networks: a survey. IEEE Commun Surv Tutorials 17(4):2317–2346
Ahn J, Yoo S, Mutlu O, Choi K (2015) PIM-enabled instructions: a low-overhead, locality-aware processing-in-memory architecture. In: Proceeding of 42nd annual international symposium on computer architecture (ISCA’15), pp 336–348
Azarkhish E, Pfister C, Rossi D, Loi I, Benini L (2017) Logic-base interconnect design for near memory computing in the smart memory cube. IEEE Trans Very Large Scale Integr VLSI Syst 25:210–223
Babarinsa OO, Idreos S (2015) Jafar: near-data processing for databases. In: SIGMOD
Balasubramonian R (2016) Making the case for feature-rich memory systems: the march toward specialized systems. IEEE Solid-State Circuits Mag 8(2):57–65
Balasubramonian R, Chang J, Manning T, Moreno JH, Murphy R, Nair R, Swanson S (2014) Near-data processing: insights from a micro-46 workshop. IEEE Micro 34(4):36–42
Boral H, DeWitt DJ (1983) Database machines: an idea whose time has passed? A critique of the future of database machines. In: Leilich H-O, Missikoff M (eds) Database machines. Springer, Berlin/Heidelberg, pp 166–187
Boroumand A, Ghose S, Patel M, Hassan H, Lucia B, Hsieh K, Malladi KT, Zheng H, Mutlu O (2017) LazyPIM: an efficient cache coherence mechanism for processing-in-memory. IEEE Comput Archit Lett 16(1):46–50
Chen C, Chen Y (2012) Dynamic active storage for high performance I/O. In: 2012 41st international conference on Parallel Processing. IEEE, pp 379–388
Chi P, Li S, Xu C, Zhang T, Zhao J, Liu Y, Wang Y, Xie Y (2016) PRIME: a novel processing-in-memory architecture for neural network computation in ReRAM-based main memory. In: Proceeding of 2016 43rd international symposium on computer architecture (ISCA 2016), pp 27–39
Cho BY, Jeong WS, Oh D, Ro WW (2013a) Xsd: accelerating mapreduce by harnessing the GPU inside an SSD. In: WoNDP: 1st workshop on near-data processing in conjunction with IEEE MICRO-46
Cho S, Park C, Oh H, Kim S, Yi Y, Ganger GR (2013b) Active disk meets flash: a case for intelligent SSDs. In: Proceeding of ICS, pp 91–102
DeWitt D, Gray J (1992) Parallel database systems: the future of high performance database systems. Commun ACM 35(6):85–98
Do J, Kee YS, Patel JM, Park C, Park K, DeWitt DJ (2013) Query processing on smart SSDs: opportunities and challenges. In: Proceeding of SIGMOD, pp 1221–1230
Drumond M, Daglis A, Mirzadeh N, Ustiugov D, Picorel J, Falsafi B, Grot B, Pnevmatikatos D (2017) The mondrian data engine. ACM SIGARCH Comput Archit News 45(2):639–651
Fan S, He Z, Tan H (2016) An active storage system with dynamic task assignment policy. In: 2016 12th international conference on natural computation fuzzy system and knowledge discovery (ICNC-FSKD 2016), pp 1421–1427
Gao M, Ayers G, Kozyrakis C (2016a) Practical near-data processing for in-memory analytics frameworks. Parallel architecture and compilation techniques – Conference proceedings, PACT 2016-March, pp 113–124
Gao M, Delimitrou C, Niu D, Malladi KT, Zheng H, Brennan B, Kozyrakis C (2016b) DRAF: a low-power DRAM-based reconfigurable acceleration fabric. In: 2016 ACM/IEEE 43rd annual international symposium on computer architecture. IEEE, pp 506–518
Gao M, Pu J, Yang X, Horowitz M, Kozyrakis C (2017) TETRIS: scalable and efficient neural network acceleration with 3D memory. ASPLOS 51(2):751–764
Hall M, Kogge P, Koller J, Diniz P, Chame J, Draper J, LaCoss J, Granacki J, Brockman J, Srivastava A, Athas W, Freeh V, Shin J, Park J (1999) Mapping irregular applications to DIVA, a PIM-based data-intensive architecture. In: ACM/IEEE conference on supercomputing (SC 1999), p 57
Hardavellas N, Ferdman M, Falsafi B, Ailamaki A (2011) Toward dark silicon in servers. IEEE Micro 31(4):6–15
Hsieh K, Ebrahim E, Kim G, Chatterjee N, O’Connor M, Vijaykumar N, Mutlu O, Keckler SW (2016) Transparent offloading and mapping (TOM): enabling programmer-transparent near-data processing in GPU systems. In: Proceeding of 2016 43rd international symposium on computer architecture (ISCA 2016), pp 204–216
István Z, Sidler D, Alonso G (2017) Caribou: intelligent distributed storage. Proc VLDB Endow 10(11): 1202–1213
Jo I, Bae DH, Yoon AS, Kang JU, Cho S, Lee DDG, Jeong J (2016) Yoursql: a high-performance database system leveraging in-storage computing. Proc VLDB Endow 9:924–935
Keeton K, Patterson DA, Hellerstein JM (1998) A case for intelligent disks (idisks). SIGMOD Rec 27(3):42–52
Kim G, Chatterjee N, O’Connor M, Hsieh K (2017a) Toward standardized near-data processing with unrestricted data placement for GPUs. In: Proceeding of international conference on high performance computing networking, storage and analysis (SC’17), pp 1–12
Kim NS, Chen D, Xiong J, Hwu WMW (2017b) Heterogeneous computing meets near-memory acceleration and high-level synthesis in the post-moore era. IEEE Micro 37(4):10–18
Kim S, Oh H, Park C, Cho S, Lee SW, Moon B (2016) In-storage processing of database scans and joins. Inf Sci 327(C):183–200
Korinth J, Chevallerie Ddl, Koch A (2015) An open-source tool flow for the composition of reconfigurable hardware thread pool architectures. In: Proceedings of the 2015 IEEE 23rd annual international symposium on field-programmable custom computing machines (FCCM’15). IEEE Computer Society, Washington, DC, pp 195–198
Kotra JB, Guttman D, Chidambaram Nachiappan N, Kandemir MT, Das CR (2017) Quantifying the potential benefits of on-chip near-data computing in manycore processors. In: 2017 IEEE 25th international symposium on modeling, analysis, and simulation of computer and telecommunication system, pp 198–209
Lim H, Park G (2017) Triple engine processor (TEP): a heterogeneous near-memory processor for diverse kernel operations. ACM Ref ACM Trans Arch Code Optim Artic 14(4):1–25
Muramatsu B, Gierschi S, McMartin F, Weimar S, Klotz G (2004) If you build it, will they come? In: Proceeding of 2004 joint ACM/IEEE Conference on digital libraries (JCDL’04) p 396
Najafi M, Sadoghi M, Jacobsen HA (2013) Flexible query processor on FPGAs. Proc VLDB Endow 6(12):1310–1313
Patterson D, Anderson T, Cardwell N, Fromm R, Keeton K, Kozyrakis C, Thomas R, Yelick K (1997) A case for intelligent ram. IEEE Micro 17(2):34–44
Petrov I, Almeida G, Buchmann A, Ulrich G (2010) Building large storage based on flash disks. In: Proceeding of ADMS’10
Picorel J, Jevdjic D, Falsafi B (2017) Near-Memory Address Translation. In: 2017 26th international conference on Parallel architectures and compilation techniques, pp 303–317, 1612.00445
Ren Y, Wu X, Zhang L, Wang Y, Zhang W, Wang Z, Hack M, Jiang S (2017) iRDMA: efficient use of RDMA in distributed deep learning systems. In: IEEE 19th international conference on high performance computing and communications, pp 231–238
Riedel E, Gibson GA, Faloutsos C (1998) Active storage for large-scale data mining and multimedia. In: Proceedings of the 24rd international conference on very large data bases (VLDB’98), pp 62–73
Sadoghi M, Javed R, Tarafdar N, Singh H, Palaniappan R, Jacobsen HA (2012) Multi-query stream processing on FPGAs. In: 2012 IEEE 28th international conference on data engineering, pp 1229–1232
Samsung (2015) In-storage computing. http://www.flash- memorysummit.com/English/Collaterals/Proceedings/ 2015/20150813_S301D_Ki.pdf
Seshadri S, Gahagan M, Bhaskaran S, Bunker T, De A, Jin Y, Liu Y, Swanson S (2014) Willow: a user-programmable SSD. In: Proceeding of OSDI’14
Sivathanu M, Bairavasundaram LN, Arpaci-Dusseau AC, Arpaci-Dusseau RH (2005) Database-aware semantically-smart storage. In: Proceedings of the 4th conference on USENIX conference on file and storage technologies (FAST’05), vol 4, pp 18–18
Sykora J, Koutny T (2010) Enhancing performance of networking applications by IP tunneling through active networks. In: 9th international conference on networks (ICN 2010), pp 361–364
Szalay A, Gray J (2006) 2020 computing: science in an exponential world. Nature 440:413–414
Tennenhouse DL, Wetherall DJ (1996) Towards an active network architecture. ACM SIGCOMM Comput Commun Rev 26(2):5–17
Tiwari D, Boboila S, Vazhkudai SS, Kim Y, Ma X, Desnoyers PJ, Solihin Y (2013) Active flash: towards energy-efficient, in-situ data analytics on extreme-scale machines. In: Proceeding of FAST, pp 119–132
Vermij E, Fiorin L, Jongerius R, Hagleitner C, Lunteren JV, Bertels K (2017) An architecture for integrated near-data processors. ACM Trans Archit Code Optim 14(3):30:1–30:25
Wang Y, Zhang M, Yang J (2017) Towards memory-efficient processing-in-memory architecture for convolutional neural networks. In: Proceeding 18th ACM SIGPLAN/SIGBED conference on languages compilers, and tools for embedded systems (LCTES 2017), pp 81–90
Woods L, Teubner J, Alonso G (2013) Less watts, more performance: an intelligent storage engine for data appliances. In: Proceeding of SIGMOD, pp 1073–1076
Woods L, István Z, Alonso G (2014) Ibex: an intelligent storage engine with support for advanced sql offloading. Proc VLDB Endow 7(11):963–974
Wulf WA, McKee SA (1995) Hitting the memory wall: implications of the obvious. SIGARCH CAN 23(1):20–24
Xi SL, Babarinsa O, Athanassoulis M, Idreos S (2015) Beyond the wall: near-data processing for databases. In: Proceeding of DaMoN, pp 2:1–2:10
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Section Editor information
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this entry
Cite this entry
Petrov, I., Vincon, T., Koch, A., Oppermann, J., Hardock, S., Riegger, C. (2018). Active Storage. In: Sakr, S., Zomaya, A. (eds) Encyclopedia of Big Data Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-63962-8_309-1
Download citation
DOI: https://doi.org/10.1007/978-3-319-63962-8_309-1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-63962-8
Online ISBN: 978-3-319-63962-8
eBook Packages: Springer Reference MathematicsReference Module Computer Science and Engineering