Nothing Special   »   [go: up one dir, main page]

Skip to main content

Wildfire: HTAP for Big Data

  • Living reference work entry
  • First Online:
Encyclopedia of Big Data Technologies

Abstract

Emerging large-scale real-time analytic applications (real-time inventory/pricing/recommendations, fraud detection, risk analysis, IoT, etc.) require data management systems that can handle fast transactions (OLTP) and analytics (OLAP) simultaneously. Some of them even require analytical queries as part of a transaction. Efficient processing of transactional and analytical requests, however, leads to different design decisions in a system. This article presents the Wildfire system, which targets hybrid transactional and analytical processing (HTAP) for big data. Wildfire leverages Apache Spark to enable large-scale data processing with different types of complex analytical requests and columnar data processing to enable fast transactions and analytics concurrently.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Barber R, Garcia-Arellano C, Grosman R, Mueller R, Raman V, Sidle R, Spilchen M, Storm AJ, Tian Y, Tözün P et al (2017) Evolving databases for new-gen big data applications. In: CIDR

    Google Scholar 

  • Boncz P, Zukowski M, Nes N (2005) MonetDB/X100: hyper-pipelining query execution. In: CIDR

    Google Scholar 

  • Diaconu C, Freedman C, Ismert E, Larson P-Å, Mittal P, Stonecipher R, Verma N, Zwilling M (2013) Hekaton: SQL server’s memory-optimized OLTP engine. In: SIGMOD, pp 1243–1254

    Google Scholar 

  • Lamb A, Fuller M, Varadarajan R, Tran N, Vandiver B, Doshi L, Bear C (2012) The vertica analytic database: C-store 7 years later. PVLDB 5(12):1790–1801

    Google Scholar 

  • O’Neil P, Cheng E, Gawlick D, O’Neil E (1996) The log-structured merge-tree (LSM-tree). Acta Inf 33(4): 351–385

    Article  Google Scholar 

  • Raman V, Attaluri G, Barber R, Chainani N, Kalmuk D, KulandaiSamy V, Leenstra J, Lightstone S, Liu S, Lohman GM, Malkemus T, Mueller R, Pandis I, Schiefer B, Sharpe D, Sidle R, Storm A, Zhang L (2013) DB2 with BLU acceleration: so much more than just a column store. PVLDB 6:1080–1091

    Google Scholar 

  • Stonebraker M, Weisberg A (2013) The VoltDB main memory DBMS. IEEE Data Eng Bull 36(2):21–27

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijayshankar Raman .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Barber, R., Raman, V., Sidle, R., Tian, Y., Tözün, P. (2018). Wildfire: HTAP for Big Data. In: Sakr, S., Zomaya, A. (eds) Encyclopedia of Big Data Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-63962-8_257-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63962-8_257-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63962-8

  • Online ISBN: 978-3-319-63962-8

  • eBook Packages: Springer Reference MathematicsReference Module Computer Science and Engineering

Publish with us

Policies and ethics