Abstract
Emerging large-scale real-time analytic applications (real-time inventory/pricing/recommendations, fraud detection, risk analysis, IoT, etc.) require data management systems that can handle fast transactions (OLTP) and analytics (OLAP) simultaneously. Some of them even require analytical queries as part of a transaction. Efficient processing of transactional and analytical requests, however, leads to different design decisions in a system. This article presents the Wildfire system, which targets hybrid transactional and analytical processing (HTAP) for big data. Wildfire leverages Apache Spark to enable large-scale data processing with different types of complex analytical requests and columnar data processing to enable fast transactions and analytics concurrently.
Similar content being viewed by others
References
Barber R, Garcia-Arellano C, Grosman R, Mueller R, Raman V, Sidle R, Spilchen M, Storm AJ, Tian Y, Tözün P et al (2017) Evolving databases for new-gen big data applications. In: CIDR
Boncz P, Zukowski M, Nes N (2005) MonetDB/X100: hyper-pipelining query execution. In: CIDR
Diaconu C, Freedman C, Ismert E, Larson P-Å, Mittal P, Stonecipher R, Verma N, Zwilling M (2013) Hekaton: SQL server’s memory-optimized OLTP engine. In: SIGMOD, pp 1243–1254
Lamb A, Fuller M, Varadarajan R, Tran N, Vandiver B, Doshi L, Bear C (2012) The vertica analytic database: C-store 7 years later. PVLDB 5(12):1790–1801
O’Neil P, Cheng E, Gawlick D, O’Neil E (1996) The log-structured merge-tree (LSM-tree). Acta Inf 33(4): 351–385
Raman V, Attaluri G, Barber R, Chainani N, Kalmuk D, KulandaiSamy V, Leenstra J, Lightstone S, Liu S, Lohman GM, Malkemus T, Mueller R, Pandis I, Schiefer B, Sharpe D, Sidle R, Storm A, Zhang L (2013) DB2 with BLU acceleration: so much more than just a column store. PVLDB 6:1080–1091
Stonebraker M, Weisberg A (2013) The VoltDB main memory DBMS. IEEE Data Eng Bull 36(2):21–27
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Section Editor information
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this entry
Cite this entry
Barber, R., Raman, V., Sidle, R., Tian, Y., Tözün, P. (2018). Wildfire: HTAP for Big Data. In: Sakr, S., Zomaya, A. (eds) Encyclopedia of Big Data Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-63962-8_257-1
Download citation
DOI: https://doi.org/10.1007/978-3-319-63962-8_257-1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-63962-8
Online ISBN: 978-3-319-63962-8
eBook Packages: Springer Reference MathematicsReference Module Computer Science and Engineering