Definitions
Coordination avoidance denotes a class of distributed system methods that minimize the amount of coordination between nodes while maintaining the integrity of the application.
Overview
In many data management systems, data and processing are replicated or distributed across nodes (Kemme et al. 2010; Bernstein and Goodman 1981). This replication and distribution increase the levels of fault tolerance and availability. However, they introduce a coordination cost to maintain the integrity of applications. Since nodes are processing data for the same application simultaneously, there is the possibility of conflicting operations that may overwrite the work of other nodes. To overcome this problem, coordination and synchronization protocols have been developed to ensure the integrity of data. Typically, the coordination protocols strive to ensure a guarantee of correctness, such as serializability (Bernstein et al. 1987) and linearizability (Herlihy and Wing 1990). These are...
References
Agrawal D, Bernstein AJ, Gupta P, Sengupta S (1987) Distributed optimistic concurrency control with reduced rollback. Distrib Comput 2(1):45–59. https://doi.org/10.1007/BF01786254
Agrawal D, El Abbadi A, Singh AK (1993) Consistency and orderability: semantics-based correctness criteria for databases. ACM Trans Database Syst (TODS) 18(3):460–486
Agrawal D, Bruno JL, El Abbadi A, Krishnaswamy V (1994) Relative serializability (extended abstract): an approach for relaxing the atomicity of transactions. In: Proceedings of the thirteenth ACM SIGACT-SIGMOD-SIGART symposium on principles of database systems. ACM, pp 139–149
Alvaro P, Conway N, Hellerstein JM, Marczak WR (2011) Consistency analysis in bloom: a calm and collected approach. In: CIDR, pp 249–260
Badrinath B, Ramamritham K (1992) Semantics-based concurrency control: beyond commutativity. ACM Trans Database Syst (TODS) 17(1):163–199
Bailis P, Ghodsi A (2013) Eventual consistency today: limitations, extensions, and beyond. Queue 11(3):20:20–20:32. https://doi.org/10.1145/2460276.2462076
Bailis P, Ghodsi A, Hellerstein JM, Stoica I (2013) Bolt-on causal consistency. In: Proceedings of the 2013 ACM SIGMOD international conference on management of data, SIGMOD’13. ACM, New York, pp 761–772. https://doi.org/10.1145/2463676.2465279
Bailis P, Fekete A, Franklin MJ, Ghodsi A, Hellerstein JM, Stoica I (2014) Coordination avoidance in database systems. Proc VLDB Endow 8(3):185–196
Berenson H, Bernstein P, Gray J, Melton J, O’Neil E, O’Neil P (1995) A critique of ansi SQL isolation levels. ACM SIGMOD Rec 24:1–10. https://doi.org/10.1145/223784.223785
Bernstein PA, Goodman N (1981) Concurrency control in distributed database systems. ACM Comput Surv (CSUR) 13(2):185–221
Bernstein PA, Hadzilacos V, Goodman N (1987) Concurrency control and recovery in database systems. Addison-Wesley, Reading
Cooper BF, Ramakrishnan R, Srivastava U, Silberstein A, Bohannon P, Jacobsen HA, Puz N, Weaver D, Yerneni R (2008) Pnuts: Yahoo!’s hosted data serving platform. Proc VLDB Endow 1(2):1277–1288. https://doi.org/10.14778/1454159.1454167
Corbett JC, Dean J, Epstein M, Fikes A, Frost C, Furman JJ, Ghemawat S, Gubarev A, Heiser C, Hochschild P, Hsieh W, Kanthak S, Kogan E, Li H, Lloyd A, Melnik S, Mwaura D, Nagle D, Quinlan S, Rao R, Rolig L, Saito Y, Szymaniak M, Taylor C, Wang R, Woodford D (2012) Spanner: Google’s globally-distributed database, pp 251–264. http://dl.acm.org/citation.cfm?id=2387880.2387905
DeCandia G, Hastorun D, Jampani M, Kakulapati G, Lakshman A, Pilchin A, Sivasubramanian S, Vosshall P, Vogels W (2007) Dynamo: Amazon’s highly available key-value store. In: Proceedings of twenty-first ACM SIGOPS symposium on operating systems principles, SOSP’07. ACM, New York, pp 205–220. https://doi.org/10.1145/1294261.1294281
Du J, Elnikety S, Roy A, Zwaenepoel W (2013) Orbe: scalable causal consistency using dependency matrices and physical clocks. In: Proceedings of the 4th annual symposium on cloud computing, SOCC’13. ACM, New York, pp 11:1–11:14. https://doi.org/10.1145/2523616.2523628
Farrag AA, Özsu MT (1989) Using semantic knowledge of transactions to increase concurrency. ACM Trans Database Syst (TODS) 14(4):503–525
Garcia-Molina H (1983) Using semantic knowledge for transaction processing in a distributed database. ACM Trans Database Syst (TODS) 8(2):186–213
Herlihy MP, Wing JM (1990) Linearizability: a correctness condition for concurrent objects. ACM Trans Program Lang Syst 12(3):463–492. https://doi.org/10.1145/78969.78972
Kemme B, Jimenez-Peris R, Patino-Martinez M (2010) Database replication. Synth Lect Data Manag 2(1):1–153. http://www.morganclaypool.com/doi/abs/10.2200/S00296ED1V01Y201008DTM007
Korth HF (1983) Locking primitives in a database system. J ACM 30(1):55–79. https://doi.org/10.1145/322358.322363
Korth HK, Speegle G (1988) Formal model of correctness without serializabilty. ACM SIGMOD Rec 17:379–386
Lamport L (1976) Towards a theory of correctness for multi-user data base system. Teeh. Rep. Tech. Rep., TRCA-7610-0712, Massachusetts Computer Associates
Lamport L (1978) Time, clocks, and the ordering of events in a distributed system. Commun ACM 21(7):558–565. https://doi.org/10.1145/359545.359563
Li C, Porto D, Clement A, Gehrke J, Preguiça NM, Rodrigues R (2012) Making geo-replicated systems fast as possible, consistent when necessary. In: OSDI, vol 12, pp 265–278
Lloyd W, Freedman MJ, Kaminsky M, Andersen DG (2011) Don’t settle for eventual: scalable causal consistency for wide-area storage with cops. In: Proceedings of the twenty-third ACM symposium on operating systems principles, SOSP’11. ACM, New York, pp 401–416. https://doi.org/10.1145/2043556.2043593
Lloyd W, Freedman MJ, Kaminsky M, Andersen DG (2013) Stronger semantics for low-latency geo-replicated storage. In: Proceedings of the 10th USENIX conference on networked systems design and implementation, NSDI’13. USENIX Association, Berkeley, pp 313–328. http://dl.acm.org/citation.cfm?id=2482626.2482657
Lynch NA (1983) Multilevel atomicity: a new correctness criterion for database concurrency control. ACM Trans Database Syst (TODS) 8(4):484–502
Nawab F, Arora V, Agrawal D, El Abbadi A (2015) Chariots: a scalable shared log for data management in multi-datacenter cloud environments. In: Proceedings of the 18th international conference on extending database technology, EDBT 2015, Brussels, pp 13–24. https://doi.org/10.5441/002/edbt.2015.03
Preguica N, Marques JM, Shapiro M, Letia M (2009) A commutative replicated data type for cooperative editing. In: 29th IEEE international conference on distributed computing systems, ICDCS’09. IEEE, pp 395–403
Roy S, Kot L, Bender G, Ding B, Hojjat H, Koch C, Foster N, Gehrke J (2015) The homeostasis protocol: avoiding transaction coordination through program analysis. In: Proceedings of the 2015 ACM SIGMOD international conference on management of data. ACM, pp 1311–1326
Satyanarayanan OT, Agrawal D (1993) Efficient execution of read-only transactions in replicated multiversion databases. IEEE Trans Knowl Data Eng 5(5):859–871. https://doi.org/10.1109/69.243514
Schlageter G (1981) Optimistic methods for concurrency control in distributed database systems. In: Proceedings of the seventh international conference on very large data bases, vol 7, VLDB Endowment, VLDB’81, pp 125–130. http://dl.acm.org/citation.cfm?id=1286831.1286844
Shapiro M, Preguiça N, Baquero C, Zawirski M (2011) Convergent and commutative replicated data types. Bull Eur Assoc Theor Comput Sci (104):67–88
Shasha D, Llirbat F, Simon E, Valduriez P (1995) Transaction chopping: algorithms and performance studies. ACM Trans Database Syst (TODS) 20(3):325–363
Sovran Y, Power R, Aguilera MK, Li J (2011) Transactional storage for geo-replicated systems. In: Proceedings of the twenty-third ACM symposium on operating systems principles, SOSP’11. ACM, New York, pp 385–400. https://doi.org/10.1145/2043556.2043592
Weikum G (1985) A theoretical foundation of multi-level concurrency control. In: Proceedings of the fifth ACM SIGACT-SIGMOD symposium on principles of database systems. ACM, pp 31–43
Zhang Y, Power R, Zhou S, Sovran Y, Aguilera MK, Li J (2013) Transaction chains: achieving serializability with low latency in geo-distributed storage systems. In: Proceedings of the twenty-fourth ACM symposium on operating systems principles, SOSP’13. ACM, New York, pp 276–291. https://doi.org/10.1145/2517349.2522729
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Section Editor information
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this entry
Cite this entry
Nawab, F. (2018). Coordination Avoidance. In: Sakr, S., Zomaya, A. (eds) Encyclopedia of Big Data Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-63962-8_182-1
Download citation
DOI: https://doi.org/10.1007/978-3-319-63962-8_182-1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-63962-8
Online ISBN: 978-3-319-63962-8
eBook Packages: Springer Reference MathematicsReference Module Computer Science and Engineering