Abstract
Earthworms are particularly skilled at navigating through confined spaces. Therefore, creating a soft robot that mimics their peristaltic locomotion could provide unique advantages for pipe inspection, search and rescue, exploration, and medical applications. Here we present the design of a new robot, FabricWorm, that like its predecessor, CMMWorm, has six segments that are actuated with circumferential cables sequentially to mimic the peristaltic motion in an earthworm. However, compared to its predecessor, FabricWorm is 41% softer, is 23% lighter, and has 64% fewer rigid structural components due to the integration of the mesh within a fabric skin. These improvements, and the benefit of a continuous fabric skin, can be important advantages for worm-like robots.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Gray, J., Lissmann, H.W.: Studies in animal locomotion VII. Locomotory reflexes in the earthworm. J. Exp. Biol. 15, 506–517 (1938)
Tanaka, T., Harigaya, K., Nakamura, T.: Development of a peristaltic crawling robot for long-distance inspection of sewer pipes. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Besançon, France, pp. 1552–1557 (2014)
Wang, K., Yan, G.: Micro robot prototype for colonoscopy and in vitro experiments. J. Med. Eng. Technol. 31, 24–28 (2007)
Dario, P., Ciarletta, P., Menciassi, A., Kim, B.: Modeling and experimental validation of the locomotion of endoscopic robots in the colon. Int. J. Robot. Res. 23, 549–556 (2004)
Kim, S., Laschi, C., Trimmer, B.: Soft robotics: a bioinspired evolution in robotics. Trends Biotechnol. 31, 287–294 (2013)
Omori, H., Nakamura, T., Yada, T.: An underground explorer robot based on peristaltic crawling of earthworms. Ind. Robot. Int. J. 36, 358–364 (2009)
Vaidyanathan, R., Chiel, H.J., Quinn, R.D.: A hydrostatic robot for marine applications. Robot. Auton. Syst. 30, 103–113 (2000)
Seok, S., Onal, C.D., Cho, K.-J., Wood, R.J., Rus, D., Kim, S.: Meshworm: a peristaltic soft robot with antagonistic nickel titanium coil actuators. IEEE/ASME Trans. Mechatron. 18, 1485–1497 (2013)
Mazzolai, B., Margheri, L., Cianchetti, M., Dario, P., Laschi, C.: Soft-robotic arm inspired by the octopus: II. From artificial requirements to innovative technological solutions. Bioinspiration Biomimetrics 7(2), 025005 (2012)
Umedachi, T., Trimmer, B.A.: Design of a 3D-printed soft robot with posture and steering control. In: Proceedings of IEEE International Conference on Robotics and Automation, Hong Kong, pp. 2874–2879 (2014)
Mangan, E.V., Kingsley, D.A., Quinn, R.D., Chiel, H.J.: Development of a peristaltic endoscope. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 347–352 (2002)
Onal, C.D., Chen, X., Whitesides, G.M., Rus, D.: Soft mobile robots with on-board chemical pressure generation. In: International Symposium on Robotics Research, pp. 1–16 (2011)
Tolley, M., Shepherd, R., Mosadegh, B., Galloway, K., Wehner, M., Karpelson, M., et al.: A Resilient. Untethered Soft Robot. Soft Robot. 1(3), 213–223 (2014)
Katzschman, R.K., Marchese, A.D., Rus, D.: Hydraulic autonomous soft robotic fish for 3D swimming. In: Proceedings of the International Symposium Experimental Robotics, pp. 1–15 (2014)
Jung, K., Koo, J.C., Nam, J., Lee, Y.K., Choi, H.R.: Artificial annelid robot driven by soft actuators. Bioinspiration Biomimetics 2(2), S42-9 (2007)
Carpi, F., Menon, C., De Rossi, D.: Electroactive elastomeric actuator for all-polymer linear peristaltic pumps. IEEE/ASME Trans. Mechatron. 15(3), 460–470 (2010)
Boxerbaum, A.S., Chiel, H.J., Quinn, R.D.: A new theory and methods for creating peristaltic motion in a robotic platform. In: Proceedings of IEEE International Conference on Robotics and Automation, Anchorage, AK, pp. 1221–1227 (2010)
Renda, F., Cianchetti, M., Giorelli, M., Arienti, A., Laschi, C.: A 3D steady-state model of a tendon-driven continuum soft manipulator inspired by the octopus arm. Bioinspiration Biomimetrics 7, 025006 (2012)
Jones, B.A., Walker, I.D.: Kinematics for multisection continuum robots. IEEE Trans. Robot. 22(1), 43–55 (2006)
Horchler, A., Kandhari, A., Daltorio, K., Moses, K., Ryan, J., Stultz, K., et al.: Peristaltic locomotion of a modular mesh-based worm robot: precision, compliance, and friction. Soft Robot. 2, 135–145 (2015)
Horchler, A.D., Kandhari, A., Daltorio, K.A., et al.: Worm-like robotic locomotion with a compliant modular mesh. In: Proceedings of International Conference on biomimetic and biohybrid systems, vol. 9222, Barcelona, Spain, pp. 26–37 (2015)
Huang, Y., Kandhari, A., Chiel, H.J., Quinn, R.D., Daltorio, K.A.: Mathematical Modeling to Improve Control of Mesh Body for Peristaltic Locomotion, Living Machines 2017 (submitted)
Lee, D., Kim, J., Park, J., Kim, S., Cho, K.: Fabrication of origami wheel using pattern embedded fabric and its application to a deformable mobile robot. IEEE (2014)
Case, J.C., Yuen, M.C., Mohammed, M., Kramer, R.K.: Sensor skins: an overview. In: Rogers, J., Gharrari, R., Kim, D.-H. (eds.) In Stretchable Bioelectronics for Medical Devices and Systems, pp. 13–191. Springer, New York (2016)
Quinlivan, B.T., Lee, S., Malcolm, P., Rossi, D.M., Grimmer, M., Siviy, C., Karavas, N., Wagner, D., Asbeck, A., Galiana, I., Walsh, C.J.: Assistance magnitude versus metabolic cost reductions for a tethered multiarticular soft exosuit. Sci. Rob. 2(2), eaah4416 (2017)
Gaddes, D., Jung, H., Pena-Francesch, A., Dion, G., Tadigadapa, S., Dressick, W., et al.: Self-healing textile: enzyme encapsulated layer-by-layer structural proteins. ACS Appl. Mater. Interfaces. 8(31), 20371–20378 (2016)
Kim, K., Chun, J., Kim, J., Lee, K., Park, J., Kim, S., et al.: Highly stretchable 2D fabrics for wearable triboelectric nanogenerator under harsh environments. ACS Nano 9(6), 6394–6400 (2015)
Coyle, S., Wu, Y., Lau, K., De Rossi, D., Wallace, G., Diamond, D.: Smart nanotextiles: a review of materials and applications. MRS Bull. 32(5), 434–442 (2007)
Connolly, F., Polygerinos, P., Walsh, C.J., Bertoldi, K.: Mechanical programming of soft actuators by varying fiber angle. Soft. Robot. 1, 26–32 (2015)
Mangan, E.V., Kingsley, D.A., Quinn, R.D., Sutton, G.P., Mansour, J.M., Chiel, H.J.: A biologically inspired gripping device. Ind. Robot. Int. J. 32, 49–54 (2005)
Mehringer, A., FabricWorm, A.: Biologically-Inspired Robot That Demonstrates Structural Advantages of a Soft Exterior for Peristaltic Locomotion, OhioLink (2017, submitted)
Acknowledgments
This work was supported by NSF research Grant No. IIS-1065489.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Mehringer, A., Kandhari, A., Chiel, H., Quinn, R., Daltorio, K. (2017). An Integrated Compliant Fabric Skin Softens, Lightens, and Simplifies a Mesh Robot. In: Mangan, M., Cutkosky, M., Mura, A., Verschure, P., Prescott, T., Lepora, N. (eds) Biomimetic and Biohybrid Systems. Living Machines 2017. Lecture Notes in Computer Science(), vol 10384. Springer, Cham. https://doi.org/10.1007/978-3-319-63537-8_27
Download citation
DOI: https://doi.org/10.1007/978-3-319-63537-8_27
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-63536-1
Online ISBN: 978-3-319-63537-8
eBook Packages: Computer ScienceComputer Science (R0)