Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Robust Method for Multimodal Image Registration Based on Vector Field Consensus

  • Conference paper
  • First Online:
Intelligent Computing Methodologies (ICIC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10363))

Included in the following conference series:

Abstract

Popular registration methods can be applying into multimodal images, such as Harris-PIIFD, SURF-RPM, GMM, GDB-ICP and so on. There exist some challenges in existing multimodal image registration techniques: (1) They fail to register image pairs with some significantly different content, illumination and texture changes; (2) They fail to register image pairs with too small overlapping or too much noise. To address these problem, this paper improves the multimodal registration by contribute a novel robust framework SURF-PIIFD-BBF-VFC (SPBV). The SURF-PIIFD method can provide enough repeatable and reliable local features; the bilateral matching method and vector field consensus (VFC) can establish robust point correspondences of two point sets. For evaluation, we compare the performance of the proposed SPBV with two existing methods Harris-PIIFD and SURF-RPM on two multimodal data sets. The results indicate that our SPBV method outperforms the existing methods and it is robust to low quality and small overlapping multimodal images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Laliberté, F., Gagnon, L., Sheng, Y.: Registration and fusion of retinal images-an evaluation study. IEEE Trans. Med. Imaging 22(5), 661–673 (2003)

    Article  Google Scholar 

  2. Chanwimaluang, T., Fan, G., Fransen, S.R.: Hybrid retinal image registration. IEEE Trans. Inf. Technol. Biomed. 10(1), 129–142 (2006)

    Article  Google Scholar 

  3. Cideciyan, A.V.: Registration of ocular fundus images: an algorithm using cross-correlation of triple invariant image descriptors. IEEE Eng. Med. Biol. Mag. 14(1), 52–58 (1995)

    Article  Google Scholar 

  4. Legg, P.A., Rosin, P.L., Marshall, D., et al.: Improving accuracy and efficiency of mutual information for multi-modal retinal image registration using adaptive probability density estimation. Comput. Med. Imaging Graph. 37(7), 597–606 (2013)

    Article  Google Scholar 

  5. Kolar, R., Harabis, V., Odstrcilik, J.: Hybrid retinal image registration using phase correlation. Imaging Sci. J. 61(4), 369–384 (2013)

    Article  Google Scholar 

  6. Ma, J., Zhou, H., Zhao, J., et al.: Robust feature matching for remote sensing image registration via locally linear transforming. IEEE Trans. Geosci. Remote Sens. 53(12), 6469–6481 (2015)

    Article  Google Scholar 

  7. Studholme, C., Hawkes, D.J., Hill, D.L.: Normalized entropy measure for multimodality image alignment. In: Medical Imaging 1998, International Society for Optics and Photonics, pp. 132–143 (1998)

    Google Scholar 

  8. Brown, L.G.: A survey of image registration techniques. ACM Comput. Surv. (CSUR) 24(4), 325–376 (1992)

    Article  Google Scholar 

  9. Chen, J., Tian, J., Lee, N., et al.: A partial intensity invariant feature descriptor for multimodal retinal image registration. IEEE Trans. Biomed. Eng. 57(7), 1707–1718 (2010)

    Article  Google Scholar 

  10. Ghassabi, Z., Shanbehzadeh, J., Sedaghat, A., et al.: An efficient approach for robust multimodal retinal image registration based on UR-SIFT features and PIIFD descriptors. EURASIP J. Image Video Process. 2013(1), 1–16 (2013). doi:10.1186/1687-5281-2013-25

    Article  Google Scholar 

  11. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  12. Bay, H., Tuytelaars, T., Gool, L.: SURF: speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006). doi:10.1007/11744023_32

    Chapter  Google Scholar 

  13. Liu, C., Ma, J., Ma, Y., et al.: Retinal image registration via feature-guided Gaussian mixture model. JOSA A 33(7), 1267–1276 (2016)

    Article  Google Scholar 

  14. Yang, G., Stewart, C.V., Sofka, M., et al.: Registration of challenging image pairs: initialization, estimation, and decision. IEEE Trans. Pattern Anal. Mach. Intell. 29(11) (2007)

    Google Scholar 

  15. Beis, J.S., Lowe, D.G.: Shape indexing using approximate nearest-neighbour search in high-dimensional spaces. In: Proceedings 1997 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1000–1006. IEEE, (1997)

    Google Scholar 

  16. Ma, J., Zhao, J., Tian, J., et al.: Robust point matching via vector field consensus. IEEE Trans. Image Proc. 23(4), 1706–1721 (2014)

    Article  MathSciNet  Google Scholar 

  17. Harris, C., Stephens, M.: A combined corner and edge detector. In: Alvey Vision Conference, vol. 15, no. 50 (1988). 10.5244

    Google Scholar 

  18. Lindeberg, T.: Feature detection with automatic scale selection. Int. J. Comput. Vis. 30(2), 79–116 (1998)

    Article  Google Scholar 

  19. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2001, CVPR 2001, vol. 1, p. I-I. IEEE (2001)

    Google Scholar 

  20. Lowe, D.G.: Object recognition from local scale-invariant features. In: The Proceedings of the Seventh IEEE International Conference on Computer vision, vol. 2, pp. 1150–1157. IEEE (1999)

    Google Scholar 

  21. Bazen, A.M., Gerez, S.H.: Systematic methods for the computation of the directional fields and singular points of fingerprints. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 905–919 (2002)

    Article  Google Scholar 

  22. Aronszajn, N.: Theory of reproducing kernels. Trans. Am. Math. Soc. 68(3), 337–404 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  23. Quellec, G., Lamard, M., Cazuguel, G., et al.: Automated assessment of diabetic retinopathy severity using content-based image retrieval in multimodal fundus photographs. Invest. Ophthalmol. Vis. Sci. 52(11), 8342–8348 (2011)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the Shanghai Innovation Action Project of Science and Technology (15DZ1101202) and the National Key Technology Support Program of China (No. 2015BAF17B00).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianhui Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Wang, X., Liu, X., Chen, Y., Zhou, Z. (2017). A Robust Method for Multimodal Image Registration Based on Vector Field Consensus. In: Huang, DS., Hussain, A., Han, K., Gromiha, M. (eds) Intelligent Computing Methodologies. ICIC 2017. Lecture Notes in Computer Science(), vol 10363. Springer, Cham. https://doi.org/10.1007/978-3-319-63315-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63315-2_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63314-5

  • Online ISBN: 978-3-319-63315-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics