Abstract
Popular registration methods can be applying into multimodal images, such as Harris-PIIFD, SURF-RPM, GMM, GDB-ICP and so on. There exist some challenges in existing multimodal image registration techniques: (1) They fail to register image pairs with some significantly different content, illumination and texture changes; (2) They fail to register image pairs with too small overlapping or too much noise. To address these problem, this paper improves the multimodal registration by contribute a novel robust framework SURF-PIIFD-BBF-VFC (SPBV). The SURF-PIIFD method can provide enough repeatable and reliable local features; the bilateral matching method and vector field consensus (VFC) can establish robust point correspondences of two point sets. For evaluation, we compare the performance of the proposed SPBV with two existing methods Harris-PIIFD and SURF-RPM on two multimodal data sets. The results indicate that our SPBV method outperforms the existing methods and it is robust to low quality and small overlapping multimodal images.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Laliberté, F., Gagnon, L., Sheng, Y.: Registration and fusion of retinal images-an evaluation study. IEEE Trans. Med. Imaging 22(5), 661–673 (2003)
Chanwimaluang, T., Fan, G., Fransen, S.R.: Hybrid retinal image registration. IEEE Trans. Inf. Technol. Biomed. 10(1), 129–142 (2006)
Cideciyan, A.V.: Registration of ocular fundus images: an algorithm using cross-correlation of triple invariant image descriptors. IEEE Eng. Med. Biol. Mag. 14(1), 52–58 (1995)
Legg, P.A., Rosin, P.L., Marshall, D., et al.: Improving accuracy and efficiency of mutual information for multi-modal retinal image registration using adaptive probability density estimation. Comput. Med. Imaging Graph. 37(7), 597–606 (2013)
Kolar, R., Harabis, V., Odstrcilik, J.: Hybrid retinal image registration using phase correlation. Imaging Sci. J. 61(4), 369–384 (2013)
Ma, J., Zhou, H., Zhao, J., et al.: Robust feature matching for remote sensing image registration via locally linear transforming. IEEE Trans. Geosci. Remote Sens. 53(12), 6469–6481 (2015)
Studholme, C., Hawkes, D.J., Hill, D.L.: Normalized entropy measure for multimodality image alignment. In: Medical Imaging 1998, International Society for Optics and Photonics, pp. 132–143 (1998)
Brown, L.G.: A survey of image registration techniques. ACM Comput. Surv. (CSUR) 24(4), 325–376 (1992)
Chen, J., Tian, J., Lee, N., et al.: A partial intensity invariant feature descriptor for multimodal retinal image registration. IEEE Trans. Biomed. Eng. 57(7), 1707–1718 (2010)
Ghassabi, Z., Shanbehzadeh, J., Sedaghat, A., et al.: An efficient approach for robust multimodal retinal image registration based on UR-SIFT features and PIIFD descriptors. EURASIP J. Image Video Process. 2013(1), 1–16 (2013). doi:10.1186/1687-5281-2013-25
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)
Bay, H., Tuytelaars, T., Gool, L.: SURF: speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006). doi:10.1007/11744023_32
Liu, C., Ma, J., Ma, Y., et al.: Retinal image registration via feature-guided Gaussian mixture model. JOSA A 33(7), 1267–1276 (2016)
Yang, G., Stewart, C.V., Sofka, M., et al.: Registration of challenging image pairs: initialization, estimation, and decision. IEEE Trans. Pattern Anal. Mach. Intell. 29(11) (2007)
Beis, J.S., Lowe, D.G.: Shape indexing using approximate nearest-neighbour search in high-dimensional spaces. In: Proceedings 1997 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1000–1006. IEEE, (1997)
Ma, J., Zhao, J., Tian, J., et al.: Robust point matching via vector field consensus. IEEE Trans. Image Proc. 23(4), 1706–1721 (2014)
Harris, C., Stephens, M.: A combined corner and edge detector. In: Alvey Vision Conference, vol. 15, no. 50 (1988). 10.5244
Lindeberg, T.: Feature detection with automatic scale selection. Int. J. Comput. Vis. 30(2), 79–116 (1998)
Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2001, CVPR 2001, vol. 1, p. I-I. IEEE (2001)
Lowe, D.G.: Object recognition from local scale-invariant features. In: The Proceedings of the Seventh IEEE International Conference on Computer vision, vol. 2, pp. 1150–1157. IEEE (1999)
Bazen, A.M., Gerez, S.H.: Systematic methods for the computation of the directional fields and singular points of fingerprints. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 905–919 (2002)
Aronszajn, N.: Theory of reproducing kernels. Trans. Am. Math. Soc. 68(3), 337–404 (1950)
Quellec, G., Lamard, M., Cazuguel, G., et al.: Automated assessment of diabetic retinopathy severity using content-based image retrieval in multimodal fundus photographs. Invest. Ophthalmol. Vis. Sci. 52(11), 8342–8348 (2011)
Acknowledgement
This work was supported by the Shanghai Innovation Action Project of Science and Technology (15DZ1101202) and the National Key Technology Support Program of China (No. 2015BAF17B00).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Wang, X., Liu, X., Chen, Y., Zhou, Z. (2017). A Robust Method for Multimodal Image Registration Based on Vector Field Consensus. In: Huang, DS., Hussain, A., Han, K., Gromiha, M. (eds) Intelligent Computing Methodologies. ICIC 2017. Lecture Notes in Computer Science(), vol 10363. Springer, Cham. https://doi.org/10.1007/978-3-319-63315-2_12
Download citation
DOI: https://doi.org/10.1007/978-3-319-63315-2_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-63314-5
Online ISBN: 978-3-319-63315-2
eBook Packages: Computer ScienceComputer Science (R0)