Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Method to Detecting Ventricular Tachycardia and Ventricular Fibrillation Based on Symbol Entropy and Wavelet Analysis

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10361))

Included in the following conference series:

  • 3065 Accesses

Abstract

Detection of ventricular tachycardia (VT) and ventricular fibrillation (VF) is crucial for the success of saving the patient’s life. In this paper, we proposed a novel method for detection of VF and VT, based on the Wavelet Analysis and Symbol Entropy. The classification accuracy of symbol entropy was 80.03% with SVM, and the classification accuracy of the symbol entropy with wavelet analysis arithmetic was 99.5% with SVM. Fusion algorithm is greater than symbol entropy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Othman, M.A., Safri, N.M., Ghani, I.A.: A new semantic mining approach for detecting ventricular tachycardia and ventricular fibrillation. Biomed. Sig. Process. Control 8, 222–227 (2013)

    Article  Google Scholar 

  2. Kong, D.R., Xie, H.B.: Use of modified sample entropy measurement to classify ventricular tachycardia and fibrillation. Measurement 44(3), 653–662 (2011)

    Article  Google Scholar 

  3. Thakor, N.V., Zhu, Y.S., Pan, K.Y.: Ventricular tachycardia and fibrillation detection by a sequential hypothesis testing algorithm. IEEE Trans. Biomed. Eng. 37(9), 837–843 (1990)

    Article  Google Scholar 

  4. Zhang, X.S., Zhu, Y.S., Thakor, N.V., Wang, Z.Z.: Detecting ventricular tachycardia and fibrillation by complexity measure. IEEE Trans. Biomed. Eng. 46(5), 548–555 (1999)

    Article  Google Scholar 

  5. Zhang, H.X., Zhu, Y.S., Xu, Y.H.: Complexity information based analysis of pathological ECG rhythm for ventricular tachycardia and ventricular fibrillation. Int. J. Bifurc. Chaos 12(10), 2293–2303 (2002)

    Article  Google Scholar 

  6. Zhang, H.X., Zhu, Y.S.: Qualitative chaos analysis for ventricular tachycardia and fibrillation based on symbol complexity. Med. Eng. Phys. 23(8), 523–528 (2001)

    Article  Google Scholar 

  7. Owis, M.I., Abou-Zied, A.H., Youssef, A.B.M.: Study of features based on nonlinear dynamical modeling in ECG arrhythmia detection and classification. IEEE Trans. Biomed. Eng. 49(7), 733–736 (2002)

    Article  Google Scholar 

  8. Fleisher, L.A., Pincus, S.M.S., Rosenbaum, H.: Approximate entropy of heart rate as a correlate of postoperative ventricular dysfunction. Anesthesiology 78(4), 683–692 (1993)

    Article  Google Scholar 

  9. Tong, S., Bezerianos, A., Paul, J., Thakor, N.: Nonextensive entropy measure of EEG following brain injury from cardiac arrest. Phys. A 305(3), 619–628 (2002)

    Article  MATH  Google Scholar 

  10. Gamero, L.G., Plastino, A., Torres, M.E.: Wavelet analysis and nonlinear dynamics in a non extensive setting. Phys. A 246(3), 487–509 (1997)

    Article  Google Scholar 

  11. Tsallis, C.: Possible generalization of boltzmann-gibbs statistics. J. Stat. Phys. 52, 479–487 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ocak, H.: Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy. Expert Syst. Appl. 36, 2027–2036 (2009)

    Article  Google Scholar 

  13. Khan, Y.U., Gotman, J.: Wavelet based automatic seizure detection in intracer- ebral electroencephalogram. Clin. Neurophysiol. 114(5), 898–908 (2003)

    Article  Google Scholar 

  14. Burrus, C.S., Gopinath, R.A., Guo, H.: Introduction to Wavelets and Wavelet Transforms: A Primer. Prentice-Hall, Upper Saddle River (1998)

    Google Scholar 

  15. Sierra, G., de Jesús Gómez, M.D., Le Guyader, P., Trelles, F., Cardinal, R., Savard, P., Nadeau, R.: Discrimination between monomorphic and polymorphic ventricular tachycardia using cycle length variability measured by wavelet transform analysis. J. Electrocardiol. 31(3), 245–255 (1998)

    Article  Google Scholar 

  16. Xia, D., Meng, Q., Chen, Y., Zhang, Z.: Classification of ventricular tachycardia and fibrillation based on the lempel-ziv complexity and EMD. In: Huang, D.-S., Han, K., Gromiha, M. (eds.) ICIC 2014. LNCS, vol. 8590, pp. 322–329. Springer, Cham (2014). doi:10.1007/978-3-319-09330-7_39

    Google Scholar 

Download references

Acknowledgment

This work was supported by the National Natural Science Foundation of China (Grant No. 61671220, 61640218, 61201428), the Shandong Distinguished Middle-aged and Young Scientist Encourage and Reward Foundation, China (Grant No. ZR2016FB14), the Project of Shandong Province Higher Educational Science and Technology Program, China (Grant No. J16LN07), the Shandong Province Key Research and Development Program, China (Grant No. 2016GGX101022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingfang Meng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Wei, Y., Meng, Q., Liu, H., Liu, M., Zhang, H. (2017). A Method to Detecting Ventricular Tachycardia and Ventricular Fibrillation Based on Symbol Entropy and Wavelet Analysis. In: Huang, DS., Bevilacqua, V., Premaratne, P., Gupta, P. (eds) Intelligent Computing Theories and Application. ICIC 2017. Lecture Notes in Computer Science(), vol 10361. Springer, Cham. https://doi.org/10.1007/978-3-319-63309-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63309-1_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63308-4

  • Online ISBN: 978-3-319-63309-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics