Abstract
This paper proposes a new and original fuzzy approach to circular iris segmentation based on isolines, sine law and lookup tables. All isolines found in the eye image together form the space in which the inner and outer boundaries of the iris are searched for, while the sine law is used for identifying clusters of concyclic points within any given and possibly noisy isoline. The new segmentation procedure proved a failure rate of 5.83% when tested on 116,564 eye images (LG2200 subset of ND-CrossSenssor-Iris-2013 database) at an average speed of four images per second on a single Xeon L5420 core.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Caselles, V., Catté, F., Coll, T., Dibos, F.: A geometric model for active contours in image processing. Numer. Math. 66(1), 1–31 (1993). doi:10.1007/BF01385685
Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22(1), 61–79 (1994). Kluwer Academic Publishers, ISSN 0920-5691, 1997
Chaudhury, K.N., Ramakrishnan, K.R.: Stability and convergence of the level set method in computer vision. Pattern Recogn. Lett. 28, 884–893 (2007). Elsevier
Daugman, J.: New methods in iris recognition. IEEE Trans. SMC - PART B Cybern. 37(5), 1167–1175 (2007). doi:10.1109/TSMCB.2007.903540. IEEE Press. ISSN 1083-4419
Daugman, J.: How iris recognition works. IEEE Trans. Circ. Syst. Video Technol. 14(1), 21–30 (2004)
Nguyen, K., Fookes, C., Sridharan, S.: Fusing shrinking and expanding active contour models for robust iris segementation. In: Proceedings of 10th International Conference on Information Science, Signal Processing and their Applications (ISSPA 2010), pp. 185–188. IEEE Press (2010)
Osher, S., Fedkiw, R.: Level Set Methods: An Overview and Some Recent Results, Technical Report CAM-00-08, Mathematics Department, UCLA, February 2000. https://www.math.ucla.edu/pub/camreport/cam00-08.ps.gz. Accessed 5 Dec 2016
ND-CrossSenssor-Iris-2013 Database. https://sites.google.com/a/nd.edu/public-cvrl/data-sets
Popescu-Bodorin, N., Balas, V.E.: Fuzzy membership, possibility, probability and negation in biometrics. Acta Polytech. Hung. 11(4), 79–100 (2014)
Popescu-Bodorin, N., Balas, V.E.: Learning iris biometric digital identities for secure authentication: a neural-evolutionary perspective pioneering intelligent iris identification. In: Recent Advances in Intelligent Engineering Systems. Studies in Computational Intelligence, vol. 378, pp. 409–434. Springer (2011)
Popescu-Bodorin, N., Balas, V.E.: Comparing haar-hilbert and log-gabor based iris encoders on bath iris image database. In: Proceedings 4th International Workshop on Soft Computing Applications, pp. 191–196. IEEE Press, July 2010. doi:10.1109/SOFA.2010.5565599. ISBN 978-1-4244-7983-2
Popescu-Bodorin, N.: Exploring new directions in iris recognition. In: 11th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC 2009), pp. 384–391. IEEE Computer Society, September 2009. doi:10.1109/SYNASC.2009.45
Ross, A., Shah, S.: Segmenting non-ideal irises using geodesic active contours. In: Proceedings of Biometrics Symposium (Baltimore, USA), pp. 1–6. IEEE (2006). doi:10.1109/BCC.2006.4341625
Shah, S., Ross, A.: Iris segmentation using geodesic active contours. IEEE Trans. Inf. Forensics Secur. 4(4), 824–836 (2009)
Zadeh, L.A.: Toward extended fuzzy logic - a first step. Fuzzy Sets Syst. 160, 3175–3181 (2009). doi:10.1016/j.fss.2009.04.009. Elsevier
Zhang, X., Sun, Z., Tan, T.: Texture removal for adaptive level set based iris segmentation. In: Processing of the 17th IEEE International Conference on Image Processing, pp. 1729–1732. IEEE Press (2010)
Acknowledgement
This work was supported by the Applied Computer Science Laboratory (Bucharest, Romania).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this paper
Cite this paper
Popescu Bodorin, N., Balas, V.E., Penariu, P.S. (2018). Circular Fuzzy Iris Segmentation Using Isolines, Sine Law and Lookup Tables. In: Balas, V., Jain, L., Balas, M. (eds) Soft Computing Applications. SOFA 2016. Advances in Intelligent Systems and Computing, vol 634. Springer, Cham. https://doi.org/10.1007/978-3-319-62524-9_33
Download citation
DOI: https://doi.org/10.1007/978-3-319-62524-9_33
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-62523-2
Online ISBN: 978-3-319-62524-9
eBook Packages: EngineeringEngineering (R0)