Abstract
The spread of new satellite and LiDAR data is recently leading to the development of effective methodologies to support the monitoring and management of disaster risks, assessing the level of damages in the very early post-event phase. The increasing availability of SAR images and the diffusion of LiDAR data due to technologies such as solutions such as drones offers the opportunity to experiment new techniques for monitoring the territory. The paper will examine the case study of Amatrice (Central Italy), the Municipality most affected by the seismic swarm started in August 2016, and discuss the results obtained with the technique of interferometric differentiation and detection of change.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
FAO: The state of the world’s land and water resources for food and agriculture (SOLAW) - Managing systems at risk. Rome and Earthscan. Food and Agriculture Organization of the United Nations, London (2011)
Casas, G.L., Scorza, F.: Sustainable planning: a methodological toolkit. In: Gervasi, O., et al. (eds.) ICCSA 2016. LNCS, vol. 9786, pp. 627–635. Springer, Cham (2016). doi:10.1007/978-3-319-42085-1_53
Amato, F., Martellozzo, F., Nolè, G., Murgante, B.: Preserving cultural heritage by supporting landscape planning with quantitative predictions of soil consumption. J. Cult. Heritage 23, 44–54 (2017). doi:10.1016/j.culher.2015.12.009
International Guidelines on Urban and Territorial Planning. Nairobi (2015)
Amato, L., Dello Buono, D., Izzi, F., La Scaleia, G., Maio, D.: HELP - an early warning dashboard system, built for the prevention, mitigation and assessment of disasters, with a flexible approach using open data and open source technologies (2016)
Scardaccione, G., Scorza, F., Casas, G.L., Murgante, B.: Spatial autocorrelation analysis for the evaluation of migration flows: the Italian case. In: Taniar, D., Gervasi, O., Murgante, B., Pardede, E., Apduhan, B.O. (eds.) ICCSA 2010. LNCS, vol. 6016, pp. 62–76. Springer, Heidelberg (2010). doi:10.1007/978-3-642-12156-2_5
Murgante, B., Tilio, L., Lanza, V., Scorza, F.: Using participative GIS and e-tools for involving citizens of Marmo Platano-Melandro area in European programming activities. J. Balk. Near East. Stud. 13(1), 97–115 (2011). doi:10.1080/19448953.2011.550809. Taylor & Francis, London. ISSN 1944-8953
Las Casas, G., Murgante, B., Scorza, F.: Regional local development strategies benefiting from open data and open tools and an outlook on the renewable energy sources contribution. In: Papa, R., Fistola, R. (eds.) Smart Energy in the Smart City: Urban Planning for a Sustainable Future, pp. 275–290. Springer, Heidelberg (2016). doi:10.1007/978-3-319-31157-9_14. ISBN 978-3-319-31155-5
Las Casas, G., Scorza, F.: Discrete spatial assessment of multi-parameter phenomena in low density region: the Val D’Agri case. In: Gervasi, O., et al. (eds.) ICCSA 2015. LNCS, vol. 9157, pp. 813–824. Springer, Cham (2015). doi:10.1007/978-3-319-21470-2_59
Sarma, K., Dey, K.S., Bahuguna, S., Shah, A., Nayak, D., Bhattacharyya, S.R.: Application of remote sensing for the study of mangrove assemblages in Sunderbans, West Bengal. In: IAPRS, Hyderabad, India, vol. XXXIV, Part 7, published on CD (2002)
Testo Unico delle Norme per l’edilizia: Classificazione sismica del territorio italiano adottata in seguito al Decreto Legislativo n. 112 del 1998 e Decreto del Presidente della Repubblica n. 380 del 2001 (2001)
Copernicus, February 2017. https://scihub.copernicus.eu/dhus/#/home
Ministry of the Environment and the Protection of the Territory and Sea (MATTM), Extraordinary Environmental Remote Surveillance Plan (PST-A) and Of its Extension (PST-A Extension 2008) (2008)
Geo Portale Nazionale, February 2017. http://www.pcn.minambiente.it/mattm/
Region, Civil Protection of Friuli Venezia Giulia (2016)
Lasaponara, R., Murgante, B., Elfadaly, A., Qelichi, M.M., Shahraki, S.Z., Wafa, O., Attia, W.: Spatial open data for monitoring risks and preserving archaeological areas and landscape: case studies at Kom el Shoqafa, Egypt and Shush, Iran. Sustainability 9, 572 (2017). doi:10.3390/su9040572
Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C: The Art of Scientific Computing, 2nd edn. Cambridge University Press, New York (1992)
Goldstein, R., Gabriel, Α.: Grossed orbits interferometry: theory and experimental (1998)
Prati, C., Rocca, F., Monti-Guarnieri, A., Damonti, E.: Seismic migration for SAR focusing: interferometrical applications. IEEE Trans. GRS Geosci. Remote Sens. 28(4), 627–640 (1990). New York
Goldstein, R.M., Werner, C.L.: Radar interferogram phase filtering for geophysical applications. Geophys. Res. Lett. 25, 4035–4038 (1998)
Small, D., Schubert, A.: Guide to ASAR Geocoding, RSL-ASAR-GC-AD, Issue 1.0 (2008)
Costantini, M.: A novel phase unwrapping method based on network programming. IEEE Tran. Geosci. Remote Sens. 36, 813–821 (1998)
Massonet, D., Monti-Guarnieri, A., Prati, C., Ferretti, A.: InSAR Principles: Guidelines for SAR Interferometry Processing and Interpretation, ESA TM-19 (2007)
Qin, R., Tian, J., Reinartz, P.: 3D change detection – approaches and applications. ISPRS J. Photogram. Remote Sens. 122, 41–56 (2016)
Singh, A.: Digital change detection techniques using remotely-sensed data. Int. J. Remote Sens. 10, 989–1003 (1989)
Tian, J., Chaabouni-Chouayakh, H., Reinartz, P., Krauss, T., d’Angelo, P.: Automatic 3D change detection based on optical satellite stereo imagery. Int. Arch. Photogram. Remote Sens. Spat. Inf. Sci. 38(Part 7B), 586–591 (2010)
Acknowledgements
Authors are grateful to the Civil Protection of Friuli Venezia Giulia region, for providing LiDAR dataset analyzed in this paper.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Saganeiti, L., Amato, F., Potleca, M., Nolè, G., Vona, M., Murgante, B. (2017). Change Detection and Classification of Seismic Damage with LiDAR and RADAR Surveys in Supporting Emergency Planning. The Case of Amatrice. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2017. ICCSA 2017. Lecture Notes in Computer Science(), vol 10407. Springer, Cham. https://doi.org/10.1007/978-3-319-62401-3_53
Download citation
DOI: https://doi.org/10.1007/978-3-319-62401-3_53
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-62400-6
Online ISBN: 978-3-319-62401-3
eBook Packages: Computer ScienceComputer Science (R0)