Abstract
Sentiment analysis and emotion recognition are emerging research fields of research that aim to build intelligent systems able to recognize and interpret human emotions. Due to the applicability of these systems to almost all kinds of markets, also the interest of companies and industries is grown in an exponential way in the last years and a lot of frameworks for programming these systems are introduced. IBM Watson is one of the most famous and used: it offers, among others, a lot of services for Natural Language Processing. In spite of broad-scale multi-language services, most of functions are not available in a lot of “secondary” languages (like Italian). The main objective of this work is to demonstrate the feasibility of a translation-based approach to emotion recognition in texts written in “secondary” languages. We present a prototypical system using IBM Watson to extract emotions from Italian text by means of Bluemix Alchemy Language. Some preliminary results are shown and discussed in order to stress pro and cons of the approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Anusha, V., Sandhya, B.: A learning based emotion classifier with semantic text processing. In: El-Alfy, E.-S.M., Thampi, S.M., Takagi, H., Piramuthu, S., Hanne, T. (eds.) Advances in Intelligent Informatics. AISC, vol. 320, pp. 371–382. Springer, Cham (2015). doi:10.1007/978-3-319-11218-3_34
Baioletti, M., Milani, A., Poggioni, V., Rossi, F.: An ACO approach to planning. In: Cotta, C., Cowling, P. (eds.) EvoCOP 2009. LNCS, vol. 5482, pp. 73–84. Springer, Heidelberg (2009). doi:10.1007/978-3-642-01009-5_7
Baioletti, M., Milani, A., Poggioni, V., Rossi, F.: Ant search strategies for planning optimization. In: ICAPS 2009 Proceedings of the 19th International Conference on Automated Planning and Scheduling, pp. 334–337 (2009)
Baioletti, M., Milani, A., Poggioni, V., Rossi, F.: Optimal planning with ACO. In: Serra, R., Cucchiara, R. (eds.) AI*IA 2009. LNCS, vol. 5883, pp. 212–221. Springer, Heidelberg (2009). doi:10.1007/978-3-642-10291-2_22
Bhaskar, J., Sruthi, K., Nedungadi, P.: Hybrid approach for emotion classification of audio conversation based on text and speech mining. Procedia Comput. Sci. 46, 635–643 (2015)
Chiancone, A., Franzoni, V., Milani, A.: A multistrain bacterial diffusion model for link prediction. Int. J. Pattern Recogn. Artif. Intell. 31(11), 157–172 (2017). World Scientific
Chiancone, A., Milani, A., Poggioni, V., Pallottelli, S., Madotto, A., Franzoni, V.: A multistrain bacterial model for link prediction. In: Proceedings of the International Conference on Natural Computation, pp. 1075–1079. IEEE Press (2016). doi:10.1109/ICNC.2015.7378141
Ferrucci, D.A.: Introduction to this is watson. IBM J. Res. Dev. 56(34), 1 (2012)
Franzoni, V., Mencacci, M., Mengoni, P., Milani, A.: Semantic heuristic search in collaborative networks: measures and contexts. In: Proceedings 2014 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology, WI/IAT 2014, vol. 1, pp. 187–217. IEEE Press (2014). doi:10.1109/WI-IAT.2014.27
Franzoni, V., Milani, A.: Pming distance: a collaborative semantic proximity measure. In: Proceedings of the IEEE/WIC/ACM International Conference on Intelligent Agent Technology, IAT 2012, vol. 2, pp. 442–449. IEEE Press (2012). doi:10.1109/WI-IAT.2012.226
Franzoni, V., Milani, A.: A pheromone-like model for semantic context extraction from collaborative networks. In: Proceedings IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology, WI-IAT 2015, 2016-January, pp. 540–547, IEEE Press (2016)
Franzoni, V., Poggioni, V., Zollo, F.: Can we infer book classification by blurbs. CEUR Workshop Proceedings, vol. 1127, pp. 16–19. CEUR WS (2014)
Franzoni, V., Biondi, G., Milani, A., Li, Y.: Web-based semantic similarity for emotion recognition in web objects. CoRR abs/1612.05734 (2016)
Franzoni, V., Poggioni, V., Zollo, F.: Automated classification of book blurbs according to the emotional tags of the social network zazie. In: 1st International Workshop on Emotion and Sentiment in Social and Expressive Media, ESSEM 2013, CEUR Workshop Proceedings, pp. 83–94. CEUR WS (2013)
Gentili, E., Milani, A., Poggioni, V.: Data summarization model for user action log files. In: Murgante, B., Gervasi, O., Misra, S., Nedjah, N., Rocha, A.M.A.C., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2012. LNCS, vol. 7335, pp. 539–549. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31137-6_41
Gupta, R.K., Yang, Y.: Crystalnest at semeval-2017 task 4: Using sarcasm detection for enhancing sentiment classification and quantification. In: SemEval: 11th International Workshop on Semantic Evaluation, Aug 3–4, 2017, Vancouver, Canada (to appear)
High, R.: The Era of Cognitive Systems: An Inside Look at IBM Watson and How it Works. IBM Corporation, Redbooks, Armonk (2012)
Houjeij, A., Hamieh, L., Mehdi, N., Hajj, H.: A novel approach for emotion classification based on fusion of text and speech. In: 2012 19th International Conference on Telecommunications (ICT), pp. 1–6, April 2012
Huang, S.l., Chen, Y.S.: Developing document classifiers for recognizing article readers’ affects. In: Proceedings of the 2012 International Conference on Information Management (2012)
Liberati, C., Camillo, F.: Subjective business polarization: Sentiment analysis meets predictive modeling. In: Catania, B., et al. (eds.) New Trends in Databases and Information Systems. AISC, vol. 241. Springer, Cham (2014)
Lupan, D., Bobocescu-Kesikis, S., Dascalu, M., Trausan-Matu, S., Dessus, P.: Predicting readers’ emotional states induced by news articles through latent semantic analysis. In: SMART 2013 International Conference on Social Media in Academia: Research and Teaching, pp. 79–84. Citeseer (2013)
Mancini, L., Milani, A., Poggioni, V., Chiancone, A.: Self regulating mechanisms for network immunization. AI Commun. 29(2), 301–317 (2016)
Markines, B., Cattuto, C., Menczer, F.: Social spam detection. In: Proceedings of the 5th International Workshop on Adversarial Information Retrieval on the Web AIRWeb 2009, p. 41 (2009)
Milani, A., Poggioni, V.: Planning in reactive environments. Comput. Intell. 23(4), 439–463 (2007)
Pallottelli, S., Franzoni, V., Milani, A.: Multi-path traces in semantic graphs for latent knowledge elicitation. In: Proceedings of International Conference on Natural Computation 2016-January, pp. 281–288. IEEE Press (2016). doi:10.1109/ICNC.2015.7378004
Ren, F., Quan, C.: Linguistic-based emotion analysis and recognition for measuring consumer satisfaction: an application of affective computing. Inf. Technol. Manage. 13(4), 321–332 (2012)
Shelke, N.: Approaches of emotion detection from text. Int. J. Comput. Sci. Inf. Technol. Res. 2(2), 123–128 (2014)
Shivhare, S.N., Garg, S., Mishra, A.: Emotionfinder: detecting emotion from blogs and textual documents. In: 2015 International Conference on Computing, Communication & Automation (ICCCA), pp. 52–57. IEEE (2015)
Shivhare, S.N., Saritha, S.K.: Emotion detection from text documents. Int. J. Data Min. Knowl. Manage. Process 4(6), 51 (2014)
Taboada, M., Brooke, J., Tofiloski, M., Voll, K., Stede, M.: Lexicon-based methods for sentiment analysis. Comput. Linguist. 37(2), 267–307 (2011)
Vallverdú, J., Trovato, G.: Emotional affordances for humanrobot interaction. Adapt. Behav. 24(5), 320–334 (2016)
Vanzo, A., Croce, D., Castellucci, G., Basili, R., Nardi, D.: Spoken language understanding for service robotics in Italian. In: Adorni, G., Cagnoni, S., Gori, M., Maratea, M. (eds.) AI*IA 2016. LNCS, vol. 10037, pp. 477–489. Springer, Cham (2016). doi:10.1007/978-3-319-49130-1_35
Wang, H., Xu, H., Liu, L., Song, W., Du, C.: An unsupervised microblog emotion dictionary construction method and its application on sentiment analysis. J. Inf. Comput. Sci. 12, 2729–2739 (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Biondi, G., Franzoni, V., Poggioni, V. (2017). A Deep Learning Semantic Approach to Emotion Recognition Using the IBM Watson Bluemix Alchemy Language. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2017. ICCSA 2017. Lecture Notes in Computer Science(), vol 10406. Springer, Cham. https://doi.org/10.1007/978-3-319-62398-6_51
Download citation
DOI: https://doi.org/10.1007/978-3-319-62398-6_51
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-62397-9
Online ISBN: 978-3-319-62398-6
eBook Packages: Computer ScienceComputer Science (R0)