Nothing Special   »   [go: up one dir, main page]

Skip to main content

Online Anomaly Detection on Rain Gauge Networks for Robust Alerting Services to Citizens at Risk from Flooding

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2017 (ICCSA 2017)

Abstract

The modern cities are addressing their innovation efforts for facing not just the common stresses cities accumulate daily, but also the sudden shocks can occur such as urban floods. Networked gauge stations are instrumental to robust floods alerts though they suffer from error and fault. For capturing the anomalous behavior of networked rain gauges, the use of an online anomaly detection methodology, based on the Support Vector Regression (SVR) technique, has here been investigated and developed. The specific anomaly case of incorrectly zero sensor readings has been efficiently addressed by a centralized architecture and a prior-knowledge free approach based on SVRs that simulate the normality profile of the networked rain gauges, on the basis of the spatial-temporal correlation existing among the observed rainfall data. Real data from the pilot rain gauge network deployed in Calabria (South Italy) have been used for simulating the anomalous sensor readings. As a result, we conclude that SVR-based anomaly detection on networked rain gauges is appropriate, detecting the eventual rain gauge fault effectively during the rainfall event and by passing through increased alert states (green, yellow, orange, red).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Webster, P.J.: Meteorology: Improve weather forecasts for the developing world. Nature 493(7430), 17–19 (2013)

    Google Scholar 

  2. Borga, M., Stoffel, M., Marchi, L., Marra, F., Jakob, M.: Hydrogeomorphic response to extreme rainfall in headwater systems: flash floods and debris flows. J. Hydrol. 518, 194–205 (2014)

    Article  Google Scholar 

  3. Agresta, A., Fattoruso, G., Pollino, M., Pasanisi, F., Tebano, C., Vito, S., Francia, G.: An ontology framework for flooding forecasting. In: Murgante, B., Misra, S., Rocha, Ana Maria A.C., Torre, C., Rocha, J.G., Falcão, M.I., Taniar, D., Apduhan, Bernady O., Gervasi, O. (eds.) ICCSA 2014. LNCS, vol. 8582, pp. 417–428. Springer, Cham (2014). doi:10.1007/978-3-319-09147-1_30

    Google Scholar 

  4. Fattoruso, G., Agresta, A., Guarnieri, G., Lanza, B., Buonanno, A., Molinara, M., Marocco, C., De Vito, S., Tortorella, F., Di Francia, G.: Optimal sensors placement for flood forecasting modelling. Procedia Eng. 119, 927–936 (2015)

    Article  Google Scholar 

  5. Marin-Perez, R., García-Pintado, J., Gómez, A.S.: A real-time measurement system for long-life flood monitoring and warning applications. Sensors 12(4), 4213–4236 (2012)

    Article  Google Scholar 

  6. Fattoruso, G., Agresta, A., De Vito, S., Di Francia, G., Pollino, M., Pasanisi, F.: Integration of wireless sensor network and hydrologic/hydraulic ontologies for flooding forecasting. In: Compagnone, D., Baldini, F., Di Natale, C., Betta, G., Siciliano, P. (eds.) Sensors. LNEE, vol. 319, pp. 327–330. Springer, Cham (2015). doi:10.1007/978-3-319-09617-9_57

    Google Scholar 

  7. Fattoruso, G., Longobardi, A., Pizzuti, A., Molinara, M., Marocco, C., De Vito, S., Tortorella, F., Di Francia, G.: Evaluation and design of a rain gauge network using a statistical optimization method in a severe hydro-geological hazard prone area. In: Proceedings of International Conference on Applied Mathematics and Computer Science, Rome, Italy, 27–29 January 2017 - AIP Conference Series (2017, In press)

    Google Scholar 

  8. Lo, S.W., Wu, J.H., Lin, F.P., Hsu, C.H.: Visual sensing for urban flood monitoring. Sensors 15(8), 20006–20029 (2015)

    Article  Google Scholar 

  9. Garcia-Font, V., Garrigues, C., Rifà-Pous, H.: A comparative study of anomaly detection techniques for smart city wireless sensor networks. Sensors 16(6), 868 (2016)

    Article  Google Scholar 

  10. Rajasegarar, S., Leckie, C., Palaniswami M.: Distributed anomaly detection in wireless sensor networks. In: 10th IEEE Singapore International Conference on Communication Systems (2006)

    Google Scholar 

  11. Modares, H., Salleh, R., Moravejosharieh, A.: Overview of security issues in wireless sensor networks. In: 2011 Third International Conference on Computational Intelligence, Modelling and Simulation (CIMSiM), pp. 308–311. IEEE (2011)

    Google Scholar 

  12. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: A survey. ACM Comput. Surv. (CSUR) 41(3), 15 (2009)

    Article  Google Scholar 

  13. Xie, M., Han, S., Tian, B., Parvin, S.: Anomaly detection in wireless sensor networks: A survey. J. Netw. Comput. Appl. 34(4), 1302–1325 (2011)

    Article  Google Scholar 

  14. Zhang, Y., Hamm, N.A., Meratnia, N., Stein, A., Van De Voort, M., Havinga, P.J.: Statistics-based outlier detection for wireless sensor networks. Int. J. Geogr. Inf. Sci. 26(8), 1373–1392 (2012)

    Article  Google Scholar 

  15. Liu, F., Cheng, X., Chen, D.: Insider attacker detection in wireless sensor networks. In: Proceedings of the International Conference on Computer Communications, Honolulu, HI, USA, pp. 1937–1945, 13–16 August 2007

    Google Scholar 

  16. Su, J., Long, Y., Qiu, X., Li, S., Liu, D.: Anomaly detection of single sensors using OCSVM_KNN. In: Wang, Yu., Xiong, H., Argamon, S., Li, X., Li, J. (eds.) BigCom 2015. LNCS, vol. 9196, pp. 217–230. Springer, Cham (2015). doi:10.1007/978-3-319-22047-5_18

    Chapter  Google Scholar 

  17. Kromanis, R., Kripakaran, P.: Support vector regression for anomaly detection from measurement histories. Adv. Eng. Inform. 27(4), 486–495 (2013)

    Article  Google Scholar 

  18. Bernieri, A., Ferrigno, L., Laracca, M., Molinara, M.: Crack shape reconstruction in eddy current testing using machine learning systems for regression. IEEE Trans. Instrum. Meas. 57(9), 1958–1968 (2008)

    Article  Google Scholar 

  19. Chang, C., Lin, C.J.: LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. (TIST) 2(3), 27 (2011)

    Google Scholar 

Download references

Acknowledgements

This research work has been funded by PON R&C 2007-2013 Smart Cities and Communities and Social Innovation/ABSIDE-AQUASYSTEM Project. The authors thanks the local Protection Civil Authority, Multi-risks Functional Center of Calabria (South Italy) that supported this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grazia Fattoruso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Fattoruso, G. et al. (2017). Online Anomaly Detection on Rain Gauge Networks for Robust Alerting Services to Citizens at Risk from Flooding. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2017. ICCSA 2017. Lecture Notes in Computer Science(), vol 10406. Springer, Cham. https://doi.org/10.1007/978-3-319-62398-6_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62398-6_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62397-9

  • Online ISBN: 978-3-319-62398-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics