Nothing Special   »   [go: up one dir, main page]

Skip to main content

Shifted Generalized Pascal Matrices in the Context of Clifford Algebra-Valued Polynomial Sequences

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2017 (ICCSA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10405))

Included in the following conference series:

  • 1807 Accesses

Abstract

The paper shows the role of shifted generalized Pascal matrices in a matrix representation of hypercomplex orthogonal Appell systems. It extends results obtained in previous works in the context of Appell sequences whose first term is a real constant to sequences whose initial term is a suitable chosen polynomial of n variables.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aceto, L., Cação, I.: A matrix approach to Sheffer polynomials. J. Math. Anal. Appl. 446, 87–100 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aceto, L., Malonek, H.R., Tomaz, G.: A unified matrix approach to the representation of Appell polynomials. Integral Transforms Spec. Funct. 26, 426–441 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aceto, L., Malonek, H.R., Tomaz, G.: Matrix approach to hypercomplex Appell polynomials. Appl. Num. Math. 116, 2–9 (2017)

    Article  MathSciNet  Google Scholar 

  4. Aceto, L., Trigiante, D.: The matrices of Pascal and other greats. Amer. Math. Monthly 108, 232–245 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Aceto, L., Trigiante, D.: Special polynomials as continuous dynamical systems. In: Cialdea, A., Dattoli, G., He, M.X., Shrivastava, H.M. (eds.) Lecture Notes of Seminario Interdisciplinare di Matematica, vol. 9, pp. 33–40 (2010)

    Google Scholar 

  6. Appell, P.: Sur une classe de polynômes. Ann. Sci. École Norm. Sup. 9(2), 119–144 (1880)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bock, S., Gürlebeck, K., Lávička, R., Souček, V.: Gelfand-Tsetlin bases for spherical monogenics in dimension 3. Rev. Mat. Iberoam. 28(4), 1165–1192 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cação, I., Falcão, M.I., Malonek, H.R.: Laguerre derivative and monogenic Laguerre polynomials: an operational approach. Math. Comput. Modelling 53, 1084–1094 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cação, I., Falcão, M.I., Malonek, H.R.: A matrix recurrence for systems of Clifford algebra-valued orthogonal polynomials. Adv. Appl. Clifford Algebras 24, 981–994 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cação, I., Falcão, M.I., Malonek, H.R.: Three-term recurrence relations for systems of Clifford algebra-valued orthogonal polynomials. Adv. Appl. Clifford Algebras 27, 71–85 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. Call, G.S., Velleman, D.J.: Pascal’s matrices. Am. Math. Monthly 100(4), 372–376 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  12. Carlson, B.C.: Polynomials satisfying a binomial theorem. J. Math. Anal. Appl. 32, 543–558 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  13. Falcão, M.I., Malonek, H.R.: Generalized exponentials through Appell sets in \(\mathbb{R}^{n+1}\) and Bessel functions. In: Simos, T.E., Psihoyios, G., Tsitouras, C. (eds.) AIP Conference Proceedings, vol. 936, pp. 738–741 (2007)

    Google Scholar 

  14. Gürlebeck, K., Malonek, H.R.: A hypercomplex derivative of monogenic functions in \(\mathbb{R}^{m+1}\) and its applications. Complex Variables 39, 199–228 (1999)

    Google Scholar 

  15. Lávička, R.: Complete orthogonal Appell systems for spherical monogenics. Complex Anal. Oper. Theory 6, 477–489 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Peña Peña, D.: Shifted Appell sequences in Clifford analysis. Results Math. 63, 1145–1157 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Portuguese Foundation for Science and Technology (“FCT-Fundação para a Ciência e Tecnologia”), through CIDMA-Center for Research and Development in Mathematics and Applications, within project UID/MAT/04106/2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graça Tomaz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Cação, I., Malonek, H.R., Tomaz, G. (2017). Shifted Generalized Pascal Matrices in the Context of Clifford Algebra-Valued Polynomial Sequences. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2017. ICCSA 2017. Lecture Notes in Computer Science(), vol 10405. Springer, Cham. https://doi.org/10.1007/978-3-319-62395-5_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62395-5_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62394-8

  • Online ISBN: 978-3-319-62395-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics