Nothing Special   »   [go: up one dir, main page]

Skip to main content

Vicious Circle Principle and Formation of Sets in ASP Based Languages

  • Conference paper
  • First Online:
Logic Programming and Nonmonotonic Reasoning (LPNMR 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10377))

Abstract

The paper continues the investigation of Poincare and Russel’s Vicious Circle Principle (VCP) in the context of the design of logic programming languages with sets. We expand previously introduced language \(\mathcal {A}log\) with aggregates by allowing infinite sets and several additional set related constructs useful for knowledge representation and teaching. In addition, we propose an alternative formalization of the original VCP and incorporate it into the semantics of new language, \(\mathcal {S}log^+\), which allows more liberal construction of sets and their use in programming rules. We show that, for programs without disjunction and infinite sets, the formal semantics of aggregates in \(\mathcal {S}log^+\) coincides with that of several other known languages. Their intuitive and formal semantics, however, are based on quite different ideas and seem to be more involved than that of \(\mathcal {S}log^+\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    It is again similar to set theory where the difficulty is normally avoided by restricting comprehension axioms guaranteeing existence of sets denoted by expressions of the form \(\{X:p(X)\}\). In ASP such restrictions are encoded in the definition of answer sets.

  2. 2.

    By a candidate answer set we mean a consistent set of ground regular literals satisfying the rules of the program.

  3. 3.

    There is a common argument for the semantics in which \(\{p(1)\}\) would be the answer set of \(P_2\): “Since \(card\{X: p(X)\} \ge 0\) is always true it can be dropped from the rule without changing the rule’s meaning”. But the argument assumes existence of the set denoted by \(\{X:p(X)\}\) which is not always the case in \(\mathcal {A}log\).

  4. 4.

    Of course this is true only because of our (somewhat arbitrary) decision to limit aggregates of \(\mathcal {A}log\) to those ranging over natural numbers. We could, of course, allow aggregates mapping sets into ordinals. In this case the body of the last rule of \(E_2\) will be defined and the only answer set of \(E_2\) will be \(S_{E_1}\).

References

  1. Alviano, M., Faber, W.: Stable model semantics of abstract dialectical frameworks revisited: a logic programming perspective. In: Proceedings of the 21st International Joint Conference on Artificial Intelligence, IJCAI Organization, Buenos Aires, Argentina, pp. 2684–2690 (2015)

    Google Scholar 

  2. Alviano, M., Faber, W., Gebser, M.: Rewriting recursive aggregates in answer set programming: back to monotonicity. Theory Pract. Logic Program. 15(4–5), 559–573 (2015)

    Article  MathSciNet  Google Scholar 

  3. Dovier, A., Pontelli, E., Rossi, G.: Intensional sets in CLP. In: Palamidessi, C. (ed.) ICLP 2003. LNCS, vol. 2916, pp. 284–299. Springer, Heidelberg (2003). doi:10.1007/978-3-540-24599-5_20

    Chapter  Google Scholar 

  4. Faber, W., Pfeifer, G., Leone, N.: Semantics and complexity of recursive aggregates in answer set programming. Artif. Intell. 175(1), 278–298 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ferraris, P., Lifschitz, V.: Weight constraints as nested expressions. TPLP 5(1–2), 45–74 (2005)

    MathSciNet  MATH  Google Scholar 

  6. Gebser, M., Harrison, A., Kaminski, R., Lifschitz, V., Schaub, T.: Abstract gringo. Theory Pract. Logic Program. 15(4–5), 449–463 (2015)

    Article  MathSciNet  Google Scholar 

  7. Gelfond, M.: Representing knowledge in A-Prolog. In: Kakas, A.C., Sadri, F. (eds.) Computational Logic: Logic Programming and Beyond. LNCS (LNAI), vol. 2408, pp. 413–451. Springer, Heidelberg (2002). doi:10.1007/3-540-45632-5_16

    Chapter  Google Scholar 

  8. Gelfond, M.: New semantics for epistemic specifications. In: Delgrande, J.P., Faber, W. (eds.) LPNMR 2011. LNCS, vol. 6645, pp. 260–265. Springer, Heidelberg (2011). doi:10.1007/978-3-642-20895-9_29

    Chapter  Google Scholar 

  9. Gelfond, M., Kahl, Y.: Knowledge Representation, Reasoning, and the Design of Intelligent Agents. Cambridge University Press, Cambridge (2014)

    Book  Google Scholar 

  10. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases. New Gener. Comput. 9(3/4), 365–386 (1991)

    Article  MATH  Google Scholar 

  11. Gelfond, M., Przymusinska, H.: On consistency and completeness of autoepistemic theories. Fundam. Inf. 16(1), 59–92 (1992)

    MathSciNet  MATH  Google Scholar 

  12. Gelfond, M., Zhang, Y.: Vicious circle principle and logic programs with aggregates. TPLP 14(4–5), 587–601 (2014). http://dx.doi.org/10.1017/S1471068414000222

    MathSciNet  MATH  Google Scholar 

  13. Harrison, A.J., Lifschitz, V., Yang, F.: The semantics of gringo and infinitary propositional formulas. In: KR (2014)

    Google Scholar 

  14. Lee, J., Lifschitz, V., Palla, R.: A reductive semantics for counting and choice in answer set programming. In: Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence, AAAI 2008, Chicago, Illinois, USA, 13–17 July 2008, pp. 472–479 (2008). http://www.aaai.org/Library/AAAI/2008/aaai08-075.php

  15. Lifschitz, V., Turner, H.: Splitting a logic program. In: Proceedings of the 11th International Conference on Logic Programming (ICLP 1994), pp. 23–38 (1994)

    Google Scholar 

  16. Liu, G., Goebel, R., Janhunen, T., Niemelä, I., You, J.-H.: Strong equivalence of logic programs with abstract constraint atoms. In: Delgrande, J.P., Faber, W. (eds.) LPNMR 2011. LNCS, vol. 6645, pp. 161–173. Springer, Heidelberg (2011). doi:10.1007/978-3-642-20895-9_15

    Chapter  Google Scholar 

  17. Liu, L., Pontelli, E., Son, T.C., Truszczynski, M.: Logic programs with abstract constraint atoms: the role of computations. Artif. Intell. 174(3–4), 295–315 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Marek, V.W., Remmel, J.B.: Set constraints in logic programming. In: Lifschitz, V., Niemelä, I. (eds.) LPNMR 2004. LNCS, vol. 2923, pp. 167–179. Springer, Heidelberg (2003). doi:10.1007/978-3-540-24609-1_16

    Chapter  Google Scholar 

  19. Niemela, I., Simons, P., Soininen, T.: Extending and implementing the stable model semantics. Artif. Intell. 138(1–2), 181–234 (2002)

    MathSciNet  MATH  Google Scholar 

  20. Pelov, N., Denecker, M., Bruynooghe, M.: Well-fouded and stable semantics of logic programs with aggregates. Theory Pract. Logic Program. 7, 355–375 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Poincare, H.: Les mathematiques et la logique. Rev. de metaphysique et de morale 14, 294–317 (1906)

    MATH  Google Scholar 

  22. Russell, B.: Mathematical logic as based on the theory of types. Am. J. Math. 30(3), 222–262 (1908)

    Article  MathSciNet  MATH  Google Scholar 

  23. Shen, Y., You, J., Yuan, L.: Characterizations of stable model semantics for logic programs with arbitrary constraint atoms. TPLP 9(4), 529–564 (2009)

    MathSciNet  MATH  Google Scholar 

  24. Son, T.C., Pontelli, E.: A constructive semantic characterization of aggregates in answer set programming. TPLP 7(3), 355–375 (2007)

    MathSciNet  MATH  Google Scholar 

  25. Strass, H.: Approximating operators and semantics for abstract dialectical frameworks. Artif. Intell. 205, 39–70 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Truszczynski, M.: Connecting first-order ASP and the logic FO(ID) through reducts. In: Erdem, E., Lee, J., Lierler, Y., Pearce, D. (eds.) Correct Reasoning. LNCS, vol. 7265, pp. 543–559. Springer, Heidelberg (2012). doi:10.1007/978-3-642-30743-0_37

    Chapter  Google Scholar 

  27. Turner, H.: Splitting a default theory. In: Proceedings of AAAI 1996, pp. 645–651 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanlin Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Gelfond, M., Zhang, Y. (2017). Vicious Circle Principle and Formation of Sets in ASP Based Languages. In: Balduccini, M., Janhunen, T. (eds) Logic Programming and Nonmonotonic Reasoning. LPNMR 2017. Lecture Notes in Computer Science(), vol 10377. Springer, Cham. https://doi.org/10.1007/978-3-319-61660-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61660-5_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61659-9

  • Online ISBN: 978-3-319-61660-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics