Abstract
The increasing interest in Brain Computer Interface (BCI) requires new fast, reliable and scalable frameworks that can be used by researchers to develop BCI based high performance applications in efficient and fast ways. In this paper is presented “UnipaBCI”, a general software framework for BCI applications based on electroencephalography (EEG) that can fulfill these new needs. A visual evoked potentials (VEP) application has also been developed using the proposed framework in order to test the modular architecture and the overall performance. Different types of users (beginners and experts in BCI) have been involved during the “UnipaBCI” experimental test and they have exhibited good and comparable results.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Spataro, R., Chella, A., Allison, B., Giardina, M., Sorbello, R., Tramonte, S., Guger, C., La Bella, V.: Reaching and grasping a glass of water by locked-in ALS patients through a BCI-controlled humanoid robot. Front. Hum. Neurosci. 11, 68 (2017)
Amiri, S., Fazel-Rezai, R., Asadpour, V.: A review of hybrid brain-computer interface systems. Adv. Hum. Comput. Interact. 2013, 1 (2013)
Lal, T.N., Hinterberger, T., Widman, G., Schröder, M., Hill, J., Rosenstiel, W., Elger, C.E., Birbaumer, N., Schölkopf, B.: Methods towards invasive human brain computer interfaces. In: Advances in Neural Information Processing Systems, pp. 737–744 (2004)
del R. Millán, J., Ferrez, P.W., Galán, F., Lew, E., Chavarriaga, R.: Non-invasive brain-machine interaction. Int. J. Pattern Recogn. Artif. Intell. 22(05), 959–972 (2008)
Tekgul, H., Bourgeois, B.F.D., Gauvreau, K., Bergin, A.M.: Electroencephalography in neonatal seizures: comparison of a reduced and a full 10/20 montage. Pediatric Neurol. 32(3), 155–161 (2005)
Guger, C., Edlinger, G., Harkam, W., Niedermayer, I., Pfurtscheller, G.: How many people are able to operate an eeg-based brain-computer interface (BCI)? IEEE Trans. Neural Syst. Rehabil. Eng. 11(2), 145–147 (2003)
Walsh, P., Kane, N., Butler, S.: The clinical role of evoked potentials. J. Neurol. Neurosurg. Psychiatry 76(suppl 2), 16–22 (2005)
Vallabhaneni, A., Wang, T., He, B.: Brain–computer interface. In: Neural Engineering, pp. 85–121. Springer (2005)
Gentile, A., Sorce, S., Santangelo, A., Vitabile, S.: Human-to-human interfaces: emerging trends and challenges. Int. J. Space-Based Situated Comput. 1, 3–17 (2011)
Schalk, G., McFarland, D.J., Hinterberger, T., Birbaumer, N., Wolpaw, J.R.: BCI 2000: a general-purpose brain-computer interface (BCI) system. IEEE Trans. Biomed. Eng. 51(6), 1034–1043 (2004)
Renard, Y., Lotte, F., Gibert, G., Congedo, M., Maby, E., Delannoy, V., Bertrand, O., Lécuyer, A.: Openvibe: an open-source software platform to design, test, and use brain-computer interfaces in real and virtual environments. Presence Teleoper. Virtual Enviro. 19(1), 35–53 (2010)
Kothe, C.A., Makeig, S.: Estimation of task workload from EEG data: new and current tools and perspectives. In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC, pp. 6547–6551. IEEE (2011)
Tanaka, K., Matsunaga, K., Wang, H.O.: Electroencephalogram-based control of an electric wheelchair. IEEE Trans. Robot. 21(4), 762–766 (2005)
Chen, S.-C., Hsu, C.-H., Kuo, H.-C., Zaeni, I.A.E.: The BCI control applied to the interactive autonomous robot with the function of meal assistance. In: Proceedings of the 3rd International Conference on Intelligent Technologies and Engineering Systems (ICITES 2014), pp. 475–483. Springer (2016)
Chella, A., Pagello, E., Menegatti, E., Sorbello, R., Anzalone, S.M., Cinquegrani, F., Tonin, L., Piccione, F., Prifitis, K., Blanda, C., Buttita, E., Tranchina, E.: A BCI teleoperated museum robotic guide, pp. 783–788 (2009)
Mason, S.G., Birch, G.E.: A general framework for brain-computer interface design. IEEE Trans. Neural Syst. Rehabil. Eng. 11(1), 70–85 (2003)
Hinterberger, T., Mellinger, J., Birbaumer, N.: The thought translation device: structure of a multimodal brain-computer communication system. In: First International IEEE EMBS Conference on Neural Engineering, Conference Proceedings, pp. 603–606. IEEE (2003)
Hinterberger, T., Nijboer, F., Kübler, A., Matuz, T., Furdea, A., Mochty, U., Jordan, M., Lal, T.N., Hill, J., Mellinger, J., et al.: Brain-computer interfaces for communication in paralysis: a clinical experimental approach. Towards Brain-Computer Interfacing, pp. 43–64 (2007)
Hastings Jr., C., Mosteller, F., Tukey, J.W., Winsor, C.P.: Low moments for small samples: a comparative study of order statistics. Ann. Math. Stat. 413–426 (1947)
Chen, T., Martin, E.: Bayesian linear regression and variable selection for spectroscopic calibration. Analytica Chimica Acta 631(1), 13–21 (2009)
Bishop, C.M.: Pattern Recognition and Machine Learning. Springer (2006)
MacKay, D.J.C.: Bayesian interpolation. Neural Comput. 4(3), 415–447 (1992)
Kaufmann, T., Schulz, S.M., Grünzinger, C., Kübler, A.: Flashing characters with famous faces improves ERP-based brain-computer interface performance. J. Neural Eng. 8(5), 056016 (2011)
Teplan, M., et al.: Fundamentals of EEG measurement. Meas. Sci. Rev. 2(2), 1–11 (2002)
Wilson, J.A., Mellinger, J., Schalk, G., Williams, J.: A procedure for measuring latencies in brain–computer interfaces. IEEE Trans. Biomed. Eng. 57(7), 1785–1797 (2010)
Acknowledgment
Authors wish to thank Christopher Guger supporting us with his BCI hardware, the master thesis students Rosario Misuraca, Walter Tranchina and Giuseppe Trubia for their support in the framework development.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this paper
Cite this paper
Tramonte, S., Sorbello, R., Giardina, M., Chella, A. (2018). UnipaBCI a Novel General Software Framework for Brain Computer Interface. In: Barolli, L., Terzo, O. (eds) Complex, Intelligent, and Software Intensive Systems. CISIS 2017. Advances in Intelligent Systems and Computing, vol 611. Springer, Cham. https://doi.org/10.1007/978-3-319-61566-0_31
Download citation
DOI: https://doi.org/10.1007/978-3-319-61566-0_31
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-61565-3
Online ISBN: 978-3-319-61566-0
eBook Packages: EngineeringEngineering (R0)