Abstract
This paper attempts to address the question of how best to assure the correctness of saturation-based automated theorem provers using our experience with developing the theorem prover Vampire. We describe the techniques we currently employ to ensure that Vampire is correct and use this to motivate future challenges that need to be addressed to make this process more straightforward and to achieve better correctness guarantees.
This work was supported by EPSRC Grant EP/K032674/1, ERC Starting Grant 2014 SYMCAR 639270, Austrian research projects FWF S11403-N23 and S11409-N23, and the Wallenberg Academy Fellowship 2014 – TheProSE.
Andrei Voronkov—EasyChair
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
Consisting of 46 nodes with quad-core Intel Xeon CPUs and 12 GB RAM.
- 3.
- 4.
All TPTP-compliant provers must produce proofs in this format (see http://www.cs.miami.edu/~tptp/TPTP/QuickGuide/Derivations.html). We note that the TPTP project also provides separate proof checking tools [23].
- 5.
References
Artho, C., Biere, A., Seidl, M.: Model-based testing for verification back-ends. In: Veanes, M., Viganò, L. (eds.) TAP 2013. LNCS, vol. 7942, pp. 39–55. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38916-0_3
Bachmair, L., Ganzinger, H.: Resolution theorem proving. In: Handbook of Automated Reasoning, vol. 1, chap. 2, pp. 19–99. Elsevier Science (2001)
Barrett, C., Conway, C., Deters, M., Hadarean, L., Jovanovic, D., King, T., Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22110-1_14
Barrett, C., Stump, A., Tinelli, C.: The Satisfiability Modulo Theories Library (SMT-LIB) (2010). www.SMT-LIB.org
Brummayer, R., Lonsing, F., Biere, A.: Automated testing and debugging of SAT and QBF solvers. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 44–57. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14186-7_6
Creignou, N., Egly, U., Seidl, M.: A framework for the specification of random SAT and QSAT formulas. In: Brucker, A.D., Julliand, J. (eds.) TAP 2012. LNCS, vol. 7305, pp. 163–168. Springer, Heidelberg (2012). doi:10.1007/978-3-642-30473-6_14
Dershowitz, N., Jayasimha, D.N., Park, S.: Bounded fairness. In: Dershowitz, N. (ed.) Verification: Theory and Practice. LNCS, vol. 2772, pp. 304–317. Springer, Heidelberg (2003). doi:10.1007/978-3-540-39910-0_14
Diekert, V., Leucker, M.: Topology, monitorable properties and runtime verification. Theor. Comput. Sci. 537, 29–41 (2014). Theoretical Aspects of Computing (ICTAC 2011)
Falcone, Y., Fernandez, J.C., Mounier, L.: Runtime verification of safety-progress properties. In: Bensalem, S., Peled, D.A. (eds.) RV 2009. LNCS, vol. 5779, pp. 40–59. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04694-0_4
Hoder, K., Reger, G., Suda, M., Voronkov, A.: Selecting the selection. In: Olivetti, N., Tiwari, A. (eds.) IJCAR 2016. LNCS, vol. 9706, pp. 313–329. Springer, Cham (2016). doi:10.1007/978-3-319-40229-1_22
Hoder, K., Voronkov, A.: Sine qua non for large theory reasoning. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803, pp. 299–314. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22438-6_23
Kaliszyk, C., Urban, J.: Hol(y)hammer: online ATP service for HOL light. Math. Comput. Sci. 9(1), 5–22 (2015)
Korovin, K.: iProver - an instantiation-based theorem prover for first-order logic (system description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS, vol. 5195, pp. 292–298. Springer, Heidelberg (2008). doi:10.1007/978-3-540-71070-7_24
Kovács, L., Voronkov, A.: First-order theorem proving and vampire. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 1–35. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39799-8_1
Paulson, L.C., Blanchette, J.C.: Three years of experience with sledgehammer, a practical link between automatic and interactive theorem provers. In: The 8th International Workshop on the Implementation of Logics, IWIL 2010. EPiC Series in Computing, vol. 2, pp. 1–11. EasyChair (2012)
Perrouin, G., Sen, S., Klein, J., Baudry, B., Traon, Y.l.: Automated and scalable t-wise test case generation strategies for software product lines. In: Proceedings of the 2010 Third International Conference on Software Testing, Verification and Validation, ICST 2010, pp. 459–468. IEEE Computer Society (2010)
Reger, G.: Better proof output for Vampire. In: Proceedings of the 3rd Vampire Workshop, Vampire 2016. EPiC Series in Computing, vol. 44, pp. 46–60. EasyChair (2017)
Reger, G., Suda, M.: The uses of sat solvers in vampire. In: Proceedings of the 1st and 2nd Vampire Workshops. EPiC Series in Computing, vol. 38, pp. 63–69. EasyChair (2016)
Reger, G., Suda, M., Voronkov, A.: New techniques in clausal form generation. In: 2nd Global Conference on Artificial Intelligence, GCAI 2016. EPiC Series in Computing, vol. 41, pp. 11–23. EasyChair (2016)
Reger, G., Suda, M., Voronkov, A.: Testing a Saturation-Based Theorem Prover: Experiences and Challenges (Extended Version). ArXiv e-prints (2017)
Riazanov, A., Voronkov, A.: Limited resource strategy in resolution theorem proving. J. Symb. Comput. 36(1–2), 101–115 (2003)
Schulz, S.: E - a brainiac theorem prover. AI Commun. 15(2–3), 111–126 (2002)
Sutcliffe, G.: Semantic derivation verification: techniques and implementation. Int. J. Artif. Intell. Tools 15(6), 1053–1070 (2006)
Sutcliffe, G.: The TPTP problem library and associated infrastructure. J. Autom. Reason. 43(4), 337–362 (2009)
Sutcliffe, G.: The CADE ATP system competition - CASC. AI Mag. 37(2), 99–101 (2016)
Weidenbach, C., Dimova, D., Fietzke, A., Kumar, R., Suda, M., Wischnewski, P.: SPASS version 3.5. In: Schmidt, R.A. (ed.) CADE 2009. LNCS, vol. 5663, pp. 140–145. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02959-2_10
Zeller, A.: Yesterday, my program worked. Today, it does not. Why? In: Nierstrasz, O., Lemoine, M. (eds.) ESEC/FSE 1999. LNCS, vol. 1687, pp. 253–267. Springer, Heidelberg (1999). doi:10.1007/3-540-48166-4_16
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Reger, G., Suda, M., Voronkov, A. (2017). Testing a Saturation-Based Theorem Prover: Experiences and Challenges. In: Gabmeyer, S., Johnsen, E. (eds) Tests and Proofs. TAP 2017. Lecture Notes in Computer Science(), vol 10375. Springer, Cham. https://doi.org/10.1007/978-3-319-61467-0_10
Download citation
DOI: https://doi.org/10.1007/978-3-319-61467-0_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-61466-3
Online ISBN: 978-3-319-61467-0
eBook Packages: Computer ScienceComputer Science (R0)