Abstract
Robotic devices for rehabilitation purposes have been increasingly studied in the past two decades and are becoming more and more diffused, due to their effective support to the traditional therapy. They allow to automate in a repeatable manner the rehabilitative exercises and to quantify outcomes, giving important feedback to the therapist. This paper deals with the design, development and preliminary characterization of a robotic system, with an exoskeleton device, for assisted upper-limb rehabilitation, in which surface EMG measurements are used to implement a force-based active and resistive control. A prototype of the system has been realized, measurements of important parameters of the motion permitted to optimize the design and preliminary tests on the control strategy were carried out.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Lo AC et al (2010) Robot-assisted therapy for long-term upper-limb impairment after stroke. N Eng J Med 362:1772–1783
Lum PS, Burgar CG, Shor PC, Majmundar M, Van der Loos M (2002) Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. Arch Phys Med Rehabil 83(7):952–959
Prange GB, Jannink MJA, Groothuis-Oudshoorn CGM, Hermens HJ, IJzerman MJ (2006) Systematic review of the effect of robot-aided therapy on recovery of the hemiparetic arm after stroke. J Rehabil Res Dev 43(2):171–184
Huang VS, Krakauer JW (2009) Robotic neurorehabilitation: a computational motor learning perspective. J NeuroEng Rehabil 6
Krebs HI, Volpe BT, Williams D, Celestino J, Charles SK, Lynch D, Hogan N (2007) Robot-aided neurorehabilitation: a robot for wrist rehabilitation. Trans Neural Syst Rehabil Eng 15(3):327–335
Colombo R, Pisano F, Micera S, Mazzone A, Delconte C, Carrozza MC, Dario P, Minuco G (2005) Robotic techniques for upper limb evaluation and rehabilitation of stroke patients. IEEE Trans Neural Syst Rehabil Eng 13(3):311–324
Lo H, Quan Xie S (2012) Exoskeleton robots for upper-limb rehabilitation: state of the art and future prospects. Med Eng Phys 34(2012):261–268
Li H, Zhao G, Zhou Y, Chen X, Ji Z, Wang L (2014) Relationship of EMG/SMG features and muscle strength level: an exploratory study on tibialis anterior muscles during plantar-flexion among hemiplegia patients. Biomed Eng Online 13(1):2–15
Kiguchi K, Hayashi Y (2015) EMG-based control of a lower-lim power-assist robot. In: Intelligent assistive robots. Springer tracts in advanced robotics, vol 106, pp 371–383
Kawasaki H, Ito S, Ishigure Y, Nishimoto Y, Aoki T, Mouri T, Skaeda H, Abe M (2007) Development of a hand motion assist robot for rehabilitation therapy by patient self-motion control. In: Proceedings of the IEEE international conference on robotic rehabilitation (ICORR), June 2007, pp 234–240
Jeong EC (2013) Comparison of wrist motion classification methods using surface electromyogram. J Cent South Univ 20(4):960–968
Celli A et al (2008) Treatment of elbow lesions: new aspects in diagnosis and surgical techniques. Springer, New York, p c2008
Kyrylova A (2015) Development of a wearable mechatronic elbow brace for postoperative motion rehabilitation. Electronic thesis and dissertation repository. Paper 3019
Ferris DP, Lewis CL, (2009) Robotic lower limb exoskeletons using proportional myoelectric control. In: Proceedings of the 31st annual international conference of the IEEE EMBS, pp 2119–2124
DiCicco M, Lucas L, Matsuoka Y (2004) Comparison of control strategies for an EMG controlled orthotic exoskeleton for the hand. In: Proceedings of the 2004 IEEE international conference on robotics and automation, April 2004
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this paper
Cite this paper
Tiboni, M., Legnani, G., Lancini, M., Serpelloni, M., Gobbo, M., Fausti, D. (2018). ERRSE: Elbow Robotic Rehabilitation System with an EMG-Based Force Control. In: Ferraresi, C., Quaglia, G. (eds) Advances in Service and Industrial Robotics. RAAD 2017. Mechanisms and Machine Science, vol 49. Springer, Cham. https://doi.org/10.1007/978-3-319-61276-8_95
Download citation
DOI: https://doi.org/10.1007/978-3-319-61276-8_95
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-61275-1
Online ISBN: 978-3-319-61276-8
eBook Packages: EngineeringEngineering (R0)