Abstract
This paper presents the open software package FloBaRoID (FLOating BAse RObot dynamical IDentification), which aims to provide a package implementing all necessary methods to identify robot dynamics parameters starting from a kinematic model. The package features data acquisition and preprocessing, extraction of identifiable base dynamics parameters, and finding physically consistent dynamics parameters for stable control and simulation. The paper details each of these steps and exemplifies the software usage with experimental results for the 7-DOF robot Kuka LWR 4+.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Source and Documentation is available at https://github.com/kjyv/flobaroid.
- 2.
- 3.
References
Wu J, Wang J, You Z (2010) An overview of dynamic parameter identification of robots. Robot Comput Integr Manufact 26(5):414–419
Atkeson CG, An CH, Hollerbach JM (1986) Estimation of inertial parameters of manipulator loads and links. Int J Robot Res 5(3):101–119
Tsagarakis NG, Caldwell DG, Bicchi A, Negrello F, Garabini M, Choi W, Baccelliere L, Loc V, Noorden J, Catalano M et al. (2016) Walkman: a high performance humanoid platform for realistic environments. J Field Robot (JFR)
Sousa CD, Cortesão R (2014) Physical feasibility of robot base inertial parameter identification: a linear matrix inequality approach. Int J Robot Res 33(6):931–944
Nori F, Traversaro S, Eljaik J, Romano F, Del Prete A, Pucci D (2015) iCub whole-body control through force regulation on rigid non-coplanar contacts. Front Robot AI 2:6
Dupont P (1990) Friction modeling in dynamic robot simulation. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp 1370–1376
Swevers J, Ganseman C, Bilgin Tükel D, De Schutter J, Van Brüssel H (1997) Optimal robot excitation and identification. IEEE Trans Robot Autom 13(5):730–740
Bonnet V, Fraisse P, Crosnier A, Gautier M, González A, Venture G (2016) Optimal exciting dance for identifying inertial parameters of an anthropomorphic structure. IEEE Trans Robot 32(4):823–836
Del Prete A, Mansard N, Ramos OE, Stasse O, Nori F (2015) Implementing torque control with high-ratio gear boxes and without joint-torque sensors. Int J Humanoid Robot 13(1):1–29 (Submitted to)
Mayeda H, Yoshida K, Osuka K (1990) Base parameters of manipulator dynamic models. IEEE Trans Robot Autom 6(3):312–321
Zak G, Benhabib B, Fenton RG, Saban I (1994) Application of the weighted least squares parameter estimation method to the robot calibration. J Mech Des 116(3):890–893 (1990)
Gaz C, Luca AD (2016) Extracting feasible robot parameters from dynamic coefficients using nonlinear optimization methods. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp 2075–2081
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this paper
Cite this paper
Bethge, S., Malzahn, J., Tsagarakis, N., Caldwell, D. (2018). FloBaRoID — A Software Package for the Identification of Robot Dynamics Parameters. In: Ferraresi, C., Quaglia, G. (eds) Advances in Service and Industrial Robotics. RAAD 2017. Mechanisms and Machine Science, vol 49. Springer, Cham. https://doi.org/10.1007/978-3-319-61276-8_18
Download citation
DOI: https://doi.org/10.1007/978-3-319-61276-8_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-61275-1
Online ISBN: 978-3-319-61276-8
eBook Packages: EngineeringEngineering (R0)