Nothing Special   »   [go: up one dir, main page]

Skip to main content

Attribute Reduction in Rough Set Theory and Formal Concept Analysis

  • Conference paper
  • First Online:
Rough Sets (IJCRS 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10314))

Included in the following conference series:

Abstract

Rough Set Theory (RST) and Formal Concept Analysis (FCA) are two mathematical tools for data analysis which, in spite of considering different philosophies, are closely related. In this paper, we study the relation between the attribute reduction mechanisms in FCA and in RST. Different properties will be introduced which provide a new size reduction mechanism in FCA based on the philosophy of RST.

Partially supported by the State Research Agency (AEI) and the European Regional Development Fund (FEDER) project TIN2016-76653-P.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We assume that the reader is familiar with the notions related to classical theory of propositional logic [8, 12].

  2. 2.

    Originally these operators were denoted as \('\) by Ganter and Wille and they were called derivation operators. In order to differentiate between the mapping on the set of objects and on the set of attributes, we have changed the notation.

  3. 3.

    Note that the discernibility matrix is symmetric due to the discernibility relation is reflexive.

  4. 4.

    In order to simplify the notation, we will write \((^{\uparrow _1},^{\downarrow ^1})\) and \((^{\uparrow _2},^{\downarrow ^2})\), instead of \((^{\uparrow _{D_1}},^{\downarrow ^{D_1}})\) and \((^{\uparrow _{D_2}},^{\downarrow ^{D_2}})\) to denote the concept-forming operators in the reduced contexts by \(D_1\) and \(D_2\), respectively.

References

  1. Benítez, M., Medina, J., Ślȩzak, D.: Delta-information reducts and bireducts. In: Alonso, J.M., Bustince, H., Reformat, M. (eds.) 2015 Conference of the International Fuzzy Systems Association and the European Society for Fuzzy Logic and Technology (IFSA- EUSFLAT 2015), Gijón, Spain, pp. 1154–1160. Atlantis Press (2015)

    Google Scholar 

  2. Benítez, M., Medina, J., Ślȩzak, D.: Reducing information systems considering similarity relations. In: Kacprzyk, J., Koczy, L., Medina, J. (eds.) 7th European Symposium on Computational Intelligence and Mathematices (ESCIM 2015), pp. 257–263 (2015)

    Google Scholar 

  3. Chen, J., Li, J., Lin, Y., Lin, G., Ma, Z.: Relations of reduction between covering generalized rough sets and concept lattices. Inf. Sci. 304, 16–27 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cornejo, M.E., Medina, J., Ramírez-Poussa, E.: Irreducible elements in multi-adjoint concept lattices. In: International Conference on Fuzzy Logic and Technology, EUSFLAT 2013, pp. 125–131 (2013)

    Google Scholar 

  5. Cornejo, M.E., Medina, J., Ramírez-Poussa, E.: Attribute reduction in multi-adjoint concept lattices. Inf. Sci. 294, 41–56 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cornelis, C., Jensen, R., Hurtado, G., Ślȩzak, D.: Attribute selection with fuzzy decision reducts. Inf. Sci. 180, 209–224 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cornelis, C., Medina, J., Verbiest, N.: Multi-adjoint fuzzy rough sets: definition, properties and attribute selection. Int. J. Approx. Reason. 55, 412–426 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Davey, B., Priestley, H.: Introduction to Lattices and Order, 2nd edn. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  9. Denecke, K., Erné, M., Wismath, S.L. (eds.): Galois Connections and Applications. Kluwer Academic Publishers, Dordrecht (2004)

    MATH  Google Scholar 

  10. Dias, S., Vieira, N.: Reducing the size of concept lattices: the JBOS approach. In: 7th International Conference on Concept Lattices and Their Applications (CLA 2010), vol. 672, pp. 80–91 (2010)

    Google Scholar 

  11. Elloumi, S., Jaam, J., Hasnah, A., Jaoua, A., Nafkha, I.: A multi-level conceptual data reduction approach based on the Lukasiewicz implication. Inf. Sci. 163(4), 253–262 (2004). Information Technology

    Article  MathSciNet  MATH  Google Scholar 

  12. Gabbay, D.M., Guenthner, F. (eds.): Handbook of Philosophical Logic. Volume I: Elements of Classical Logic. Springer, Netherlands (1983)

    MATH  Google Scholar 

  13. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundation. Springer, Heidelberg (1999)

    Book  MATH  Google Scholar 

  14. Janusz, A., Ślȩzak, D., Nguyen, H.S.: Unsupervised similarity learning from textual data. Fundam. Informaticae 119, 319–336 (2012)

    MathSciNet  MATH  Google Scholar 

  15. Li, J., Kumar, C.A., Mei, C., Wang, X.: Comparison of reduction in formal decision contexts. Int. J. Approx. Reason. 80, 100–122 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Li, M., Wang, G.: Approximate concept construction with three-way decisions and attribute reduction in incomplete contexts. Knowl.-Based Syst. 91, 165–178 (2016)

    Article  Google Scholar 

  17. Mac Parthalain, N., Jensen, R.: Simultaneous feature and instance selection using fuzzy-rough bireducts. In: IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2013), pp. 1–8, July 2013

    Google Scholar 

  18. Medina, J.: Multi-adjoint property-oriented and object-oriented concept lattices. Inf. Sci. 190, 95–106 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Medina, J.: Relating attribute reduction in formal, object-oriented and property-oriented concept lattices. Comput. Math. Appl. 64(6), 1992–2002 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Pawlak, Z.: Rough sets. Int. J. Comput. Inf. Sci. 11, 341–356 (1982)

    Article  MATH  Google Scholar 

  21. Ślęzak, D., Janusz, A.: Ensembles of bireducts: towards robust classification and simple representation. In: Kim, T., Adeli, H., Slezak, D., Sandnes, F.E., Song, X., Chung, K., Arnett, K.P. (eds.) FGIT 2011. LNCS, vol. 7105, pp. 64–77. Springer, Heidelberg (2011). doi:10.1007/978-3-642-27142-7_9

    Chapter  Google Scholar 

  22. Stawicki, S., Ślęzak, D.: Recent advances in decision bireducts: complexity, heuristics and streams. In: Lingras, P., Wolski, M., Cornelis, C., Mitra, S., Wasilewski, P. (eds.) RSKT 2013. LNCS, vol. 8171, pp. 200–212. Springer, Heidelberg (2013). doi:10.1007/978-3-642-41299-8_19

    Chapter  Google Scholar 

  23. Wei, L., Qi, J.-J.: Relation between concept lattice reduction and rough set reduction. Knowl.-Based Syst. 23(8), 934–938 (2010)

    Article  Google Scholar 

  24. Yao, Y.-Q., Mi, J.-S., Li, Z.-J.: Attribute reduction based on generalized fuzzy evidence theory in fuzzy decision systems. Fuzzy Sets Syst. 170(1), 64–75 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eloísa Ramírez-Poussa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Benítez-Caballero, M.J., Medina, J., Ramírez-Poussa, E. (2017). Attribute Reduction in Rough Set Theory and Formal Concept Analysis. In: Polkowski, L., et al. Rough Sets. IJCRS 2017. Lecture Notes in Computer Science(), vol 10314. Springer, Cham. https://doi.org/10.1007/978-3-319-60840-2_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60840-2_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60839-6

  • Online ISBN: 978-3-319-60840-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics