Nothing Special   »   [go: up one dir, main page]

Skip to main content

Conflict Analysis for Pythagorean Fuzzy Information Systems

  • Conference paper
  • First Online:
Rough Sets (IJCRS 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10314))

Included in the following conference series:

Abstract

Pythagorean fuzzy sets as generalizations of intuitionistic fuzzy sets are effective for dealing with uncertainty information, but little effort has been paid to conflict analysis of Pythagorean fuzzy information systems. In this paper, we present the concepts of the maximum positive alliance, central alliance, and negative alliance with the two thresholds \(\alpha \) and \(\beta \). Then we show how to compute the thresholds \(\alpha \) and \(\beta \) for conflict analysis based on decision-theoretic rough set theory. Finally, we employ several examples to illustrate how to compute the maximum positive alliance, central alliance, and negative alliance from the view of matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Beliakov, G., James, S.: Averaging aggregation functions for preferences expressed as Pythagorean membership grades and fuzzy orthopairs. In: Proceedings of 2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 298–305. IEEE (2014)

    Google Scholar 

  2. Bustince, H., Barrenechea, E., Pagola, M., Fernandez, J., Xu, Z.S., Bedregal, B., Montero, J., Hagras, H., Herrera, F., DeBaets, B.: A historical account of types of fuzzy sets and their relationships. IEEE Trans. Fuzzy Syst. 24(1), 179–194 (2016)

    Article  Google Scholar 

  3. Deja, R.: Conflict Analysis, Rough Set Methods and Applications. Studies in Fuzzyness and Soft Comput. Physica, Heidelberg (2000). 491–520

    Google Scholar 

  4. Ju, H.R., Li, H.X., Yang, X.B., Zhou, X.Z.: Cost-sensitive rough set: a multi-granulation approach. Knowl.-Based Syst. (2017). http://dx.doi.org/10.1016/j.knosys.2017.02.019

  5. Kang, X.P., Miao, D.Q.: A variable precision rough set model based on the granularity of tolerance relation. Knowl.-Based Syst. 102, 103–115 (2016)

    Article  Google Scholar 

  6. Khan, M.T., Azam, N., Khalid, S., Yao, J.T.: A three-way approach for learning rules in automatic knowledge-based topic models. Int. J. Approx. Reason. 82, 210–226 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. Lang, G.M., Miao, D.Q., Yang, T., Cai, M.J.: Knowledge reduction of dynamic covering decision information systems when varying covering cardinalities. Inf. Sci. 346–347, 236–260 (2016)

    Article  Google Scholar 

  8. Li, H.X., Zhang, L.B., Zhou, X.Z., Huang, B.: Cost-sensitive sequential three-way decision modeling using a deep neural network. Int. J. Approx. Reason. (2017). http://dx.doi.org/10.1016/j.ijar.2017.03.008

  9. Lin, T.Y.: Granular computing on binary relations analysis of conflict and chinese wall security policy. In: Alpigini, J.J., Peters, J.F., Skowron, A., Zhong, N. (eds.) RSCTC 2002. LNCS, vol. 2475, pp. 296–299. Springer, Heidelberg (2002). doi:10.1007/3-540-45813-1_38

    Chapter  Google Scholar 

  10. Liu, G.L.: The axiomatization of the rough set upper approximation operations. Fundam. Informaticae 69(3), 331–342 (2006)

    MathSciNet  MATH  Google Scholar 

  11. Maeda, Y., Senoo, K., Tanaka, H.: Interval density functions in conflict analysis. In: Zhong, N., Skowron, A., Ohsuga, S. (eds.) RSFDGrC 1999. LNCS, vol. 1711, pp. 382–389. Springer, Heidelberg (1999). doi:10.1007/978-3-540-48061-7_46

    Chapter  Google Scholar 

  12. Pawlak, Z.: Some remarks on conflict analysis. Eur. J. Oper. Res. 166(3), 649–654 (2005)

    Article  MATH  Google Scholar 

  13. de Oliveira Silva, L.G., de Almeida-Filho, A.T.: A multicriteria approach for analysis of conflicts in evidence theory. Inf. Sci. 346, 275–285 (2016)

    Article  Google Scholar 

  14. Ramanna, S., Skowron, A.: Requirements interaction and conflicts: a rough set approach. In: Proceedings of IEEE Symposium Series on Foundations of Computational Intelligence (2007)

    Google Scholar 

  15. Reformat, M.Z., Yager, R.R.: Suggesting recommendations using pythagorean fuzzy sets illustrated using netflix movie data. In: Laurent, A., Strauss, O., Bouchon-Meunier, B., Yager, R.R. (eds.) IPMU 2014. CCIS, vol. 442, pp. 546–556. Springer, Cham (2014). doi:10.1007/978-3-319-08795-5_56

    Google Scholar 

  16. Sun, B.Z., Ma, W.M., Zhao, H.Y.: Rough set-based conflict analysis model and method over two universes. Inf. Sci. 372, 111–125 (2016)

    Article  Google Scholar 

  17. Skowron, A., Deja, R.: On some conflict models and conflict resolutions. Rom. J. Inf. Sci. Technol. 5(1–2), 69–82 (2002)

    Google Scholar 

  18. Song, J.J., Tsang, E.C.C., Chen, D.G., Yang, X.B.: Minimal decision cost reduct in fuzzy decision-theoretic rough set model. Knowl.-Based Syst. (2017). http://dx.doi.org/10.1016/j.knosys.2017.03.013

  19. Yager, R.R.: Pythagorean membership grades in multicriteria decision making. IEEE Trans. Fuzzy Syst. 22, 958–965 (2014)

    Article  Google Scholar 

  20. Yao, Y.Y.: Probabilistic rough set approximations. Int. J. Approx. Reason. 49, 255–271 (2008)

    Article  MATH  Google Scholar 

  21. Zhang, X.L., Xu, Z.S.: Extension of TOPSIS to multiple criteria decision making with Pythagorean fuzzy sets. Int. J. Intell. Syst. 29, 1061–1078 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

We would like to thank the reviewers very much for their professional comments and valuable suggestions. This work is supported by the National Natural Science Foundation of China (Nos. 61603063, 61673301, 11526039), Doctoral Fund of Ministry of Education of China (No. 20130072130004), China Postdoctoral Science Foundation (No. 2015M580353), China Postdoctoral Science special Foundation (No. 2016T90383).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duoqian Miao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Lang, G., Miao, D., Zhang, Z., Yao, N. (2017). Conflict Analysis for Pythagorean Fuzzy Information Systems. In: Polkowski, L., et al. Rough Sets. IJCRS 2017. Lecture Notes in Computer Science(), vol 10314. Springer, Cham. https://doi.org/10.1007/978-3-319-60840-2_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60840-2_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60839-6

  • Online ISBN: 978-3-319-60840-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics