Nothing Special   »   [go: up one dir, main page]

Skip to main content

Heterogeneous Approximate Reasoning with Graded Truth Values

  • Conference paper
  • First Online:
Rough Sets (IJCRS 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10313))

Included in the following conference series:

Abstract

This paper is devoted to paraconsistent approximate reasoning with graded truth-values. In the previous research we introduced a family of many-valued logics parameterized by a variable number of truth/falsity grades together with a corresponding family of rule languages with tractable query evaluation. Such grades are shown here to be a natural qualitative counterpart of quantitative measures used in various forms of approximate reasoning. The developed methodology allows one to obtain a framework unifying heterogeneous reasoning techniques, providing also the logical machinery to resolve partial and incoherent information that may arise after unification. Finally, we show the introduced framework in action, emphasizing its expressiveness in handling heterogeneous approximate reasoning in realistic scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Note that, in the classical setting, \(R^+(a)+R^-(a)=1\). If, however, the values of A(z) may be unknown or inconsistent then these values do not have to sum up to 1.

  2. 2.

    Of course, one could also adapt here the method for fuzzy sets provided in Sect. 3.1.

  3. 3.

    A video of the prototype is available at:https://www.youtube.com/watch?v=4u_O6-ylhvU.

References

  1. de Amo, S., Pais, M.: A paraconsistent logic approach for querying inconsistent databases. Int. J. Approximate Reason. 46, 366–386 (2007)

    Article  MathSciNet  Google Scholar 

  2. Atanassov, K.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20, 87–96 (1986)

    Article  Google Scholar 

  3. Atanassov, K.: On Intuitionistic Fuzzy Sets Theory. Studies in Fuzziness and Soft Computing, vol. 283. Springer, Heidelberg (2012)

    MATH  Google Scholar 

  4. Bézieau, J.J., Carnielli, W., Gabbay, D. (eds.): Handbook of Paraconsistency. College Publications, London (2007)

    Google Scholar 

  5. Covington, M.: Defeasible logic on an embedded microcontroller. Appl. Intell. 13(3), 259–264 (2000)

    Article  Google Scholar 

  6. Damásio, C., Pereira, L.: A survey of paraconsistent semantics for logic programs. In: Besnard, P., Hunter, A. (eds.) Reasoning with Actual and Potential Contradictions, vol. 2, pp. 241–320. Springer, Heidelberg (1998). doi:10.1007/978-94-017-1739-7_8

    Chapter  Google Scholar 

  7. De Angelis, F.L., Di Marzo Serugendo, G., Szałas, A.: Paraconsistent rule-based reasoning with graded truth values. To be published in IfColog Journal of Logics and their Applications (2017)

    Google Scholar 

  8. Demri, S., Orłowska, E.: Incomplete Information: Structure, Inference, Complexity. EATCS Monographs. Springer, Heidelberg (2002)

    Book  Google Scholar 

  9. Doherty, P., Dunin-Kȩplicz, B., Szałas, A.: Dynamics of approximate information fusion. In: Kryszkiewicz, M., Peters, J.F., Rybinski, H., Skowron, A. (eds.) RSEISP 2007. LNCS, vol. 4585, pp. 668–677. Springer, Heidelberg (2007). doi:10.1007/978-3-540-73451-2_70

    Chapter  Google Scholar 

  10. Doherty, P., Łukaszewicz, W., Skowron, A., Szałas, A.: Knowledge Representation Techniques, A Rough Set Approach. Studies in Fuziness and Soft Computing, vol. 202. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  11. Dubois, D., Gottwald, S., Hájek, P., Kacprzyk, J., Prade, H.: Terminological difficulties in fuzzy set theory - the case of “Intuitionistic Fuzzy Sets". Fuzzy Sets Syst. 156(3), 485–491 (2005)

    Article  MathSciNet  Google Scholar 

  12. Dubois, D., Konieczny, S., Prade, H.: Quasi-possibilistic logic and its measures of information and conflict. Fundamenta Informaticae 57(2–4), 101–125 (2003)

    MathSciNet  MATH  Google Scholar 

  13. Dubois, D., Lang, J., Prade, H.: Fuzzy sets in approximate reasoning, part 2: logical approaches. Fuzzy Sets Syst. 40(1), 203–244 (1991)

    Article  Google Scholar 

  14. Dubois, D., Prade, H.: Fuzzy sets in approximate reasoning, part 1: inference with possibility distributions. Fuzzy Sets Syst. 40(1), 143–202 (1991)

    Article  Google Scholar 

  15. Dunin-Kęplicz, B., Szałas, A.: Agents in approximate environments. In: Eijck, J., Verbrugge, R. (eds.) Games, Actions and Social Software. Multidisciplinary Aspects. LNCS, vol. 7010, pp. 141–163. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29326-9_8

    Chapter  Google Scholar 

  16. Kruse, R., Schwecke, E., Heinsohn, J.: Uncertainty and Vagueness in Knowledge Based Systems. Numerical Methods. Springer, Heidelberg (1991)

    Book  Google Scholar 

  17. Małuszyński, J., Szałas, A.: Partiality and inconsistency in agents’ belief bases. In: Barbucha et al., D. (ed.) Proceedings of KES-AMSTA. Frontiers of Artificial Intelligence and Applications, vol. 252, pp. 3–17. IOS Press (2011)

    Google Scholar 

  18. Pawlak, Z.: Rough Sets. Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Dordrecht (1991)

    MATH  Google Scholar 

  19. Pawlak, Z., Polkowski, L., Skowron, A.: Rough set theory. In: Wah, B. (ed.) Wiley Encyclopedia of Computer Science and Engineering. Wiley (2008)

    Google Scholar 

  20. Pimentel, S.G., Rodi, W.L.: Belief revision and paraconsistency in a logic programming framework. In: Nerode, A., Marek, W., Subrahmanian, V.S. (eds.) Logic Programming and Non-Monotonic Reasoning: Proceedings of the First International Workshop, pp. 228–242. MIT Press (1991)

    Google Scholar 

  21. Polkowski, L.: Approximate Reasoning by Parts - An Introduction to Rough Mereology. Intelligent Systems Reference Library, vol. 20. Springer, Heidelberg (2011)

    Book  Google Scholar 

  22. Polkowski, L., Semeniuk-Polkowska, M.: Where rough sets and fuzzy sets meet. Fundam. Inform. 142(1–4), 269–284 (2015)

    Article  MathSciNet  Google Scholar 

  23. Prade, H.: A quantitative approach to approximate reasoning in rule-based expert systems. In: Bolc, L., Coombs, M. (eds.) Expert System Applications, pp. 199–256. Springer, Heidelberg (1988)

    Chapter  Google Scholar 

  24. Skowron, A., Stepaniuk, J., Swiniarski, R.: Approximation spaces in rough-granular computing. Fundam. Inform. 100(1–4), 141–157 (2010)

    MathSciNet  MATH  Google Scholar 

  25. Szałas, A.: Symbolic explanations of generalized fuzzy reasoning. In: Neves-Silva, R., Tshirintzis, G., Uskov, V., Howlett, R., Jain, L. (eds.) Smart Digital Futures 2014, pp. 7–16. IOS Press (2014)

    Google Scholar 

  26. Wang, H., Sunderraman, R.: A data model based on paraconsistent intuitionistic fuzzy relations. In: Hacid, M.-S., Murray, N.V., Raś, Z.W., Tsumoto, S. (eds.) ISMIS 2005. LNCS (LNAI), vol. 3488, pp. 669–677. Springer, Heidelberg (2005). doi:10.1007/11425274_69

    Chapter  Google Scholar 

  27. Yao, Y., Lin, T.: Generalization of rough sets using modal logics. Intell. Autom. Soft Comput. 2(2), 103–119 (1996)

    Article  Google Scholar 

  28. Yao, Y., Lin, T.: Graded rough set approximations based on nested neighborhood systems. In: Proceedings of the 5th European Congress on Intelligent Techniques and Soft Computing, vol. 1, pp. 196–200 (1997)

    Google Scholar 

  29. Yao, Y., Wong, S., Lin, T.: A review of rough set models. In: Lin, T.Y., Cercone, N. (eds.) Rough Sets and Data Mining, pp. 47–75. Springer, New York (1997)

    Chapter  Google Scholar 

  30. Zadeh, L.: From computing with numbers to computing with words - from manipulation of measurements to manipulation of perceptions. Int. J. Appl. Math. Comput. Sci. 12(3), 307–324 (2002)

    MathSciNet  MATH  Google Scholar 

  31. Zadeh, L.: Fuzzy sets. Inf. Control 8, 333–353 (1965)

    Article  Google Scholar 

  32. Zadeh, L.: Computing with Words - Principal Concepts and Ideas. Studies in fuzziness and soft computing, vol. 277. Springer, Heidelberg (2012)

    Book  Google Scholar 

Download references

Acknowledgments

The last two authors have been supported by the Polish National Science Centre grant 2015/19/B/ST6/02589.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Szałas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

De Angelis, F.L., Di Marzo Serugendo, G., Dunin-Kęplicz, B., Szałas, A. (2017). Heterogeneous Approximate Reasoning with Graded Truth Values. In: Polkowski, L., et al. Rough Sets. IJCRS 2017. Lecture Notes in Computer Science(), vol 10313. Springer, Cham. https://doi.org/10.1007/978-3-319-60837-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60837-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60836-5

  • Online ISBN: 978-3-319-60837-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics