Abstract
This paper is devoted to paraconsistent approximate reasoning with graded truth-values. In the previous research we introduced a family of many-valued logics parameterized by a variable number of truth/falsity grades together with a corresponding family of rule languages with tractable query evaluation. Such grades are shown here to be a natural qualitative counterpart of quantitative measures used in various forms of approximate reasoning. The developed methodology allows one to obtain a framework unifying heterogeneous reasoning techniques, providing also the logical machinery to resolve partial and incoherent information that may arise after unification. Finally, we show the introduced framework in action, emphasizing its expressiveness in handling heterogeneous approximate reasoning in realistic scenarios.
Similar content being viewed by others
Notes
- 1.
Note that, in the classical setting, \(R^+(a)+R^-(a)=1\). If, however, the values of A(z) may be unknown or inconsistent then these values do not have to sum up to 1.
- 2.
Of course, one could also adapt here the method for fuzzy sets provided in Sect. 3.1.
- 3.
A video of the prototype is available at:https://www.youtube.com/watch?v=4u_O6-ylhvU.
References
de Amo, S., Pais, M.: A paraconsistent logic approach for querying inconsistent databases. Int. J. Approximate Reason. 46, 366–386 (2007)
Atanassov, K.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20, 87–96 (1986)
Atanassov, K.: On Intuitionistic Fuzzy Sets Theory. Studies in Fuzziness and Soft Computing, vol. 283. Springer, Heidelberg (2012)
Bézieau, J.J., Carnielli, W., Gabbay, D. (eds.): Handbook of Paraconsistency. College Publications, London (2007)
Covington, M.: Defeasible logic on an embedded microcontroller. Appl. Intell. 13(3), 259–264 (2000)
Damásio, C., Pereira, L.: A survey of paraconsistent semantics for logic programs. In: Besnard, P., Hunter, A. (eds.) Reasoning with Actual and Potential Contradictions, vol. 2, pp. 241–320. Springer, Heidelberg (1998). doi:10.1007/978-94-017-1739-7_8
De Angelis, F.L., Di Marzo Serugendo, G., Szałas, A.: Paraconsistent rule-based reasoning with graded truth values. To be published in IfColog Journal of Logics and their Applications (2017)
Demri, S., Orłowska, E.: Incomplete Information: Structure, Inference, Complexity. EATCS Monographs. Springer, Heidelberg (2002)
Doherty, P., Dunin-Kȩplicz, B., Szałas, A.: Dynamics of approximate information fusion. In: Kryszkiewicz, M., Peters, J.F., Rybinski, H., Skowron, A. (eds.) RSEISP 2007. LNCS, vol. 4585, pp. 668–677. Springer, Heidelberg (2007). doi:10.1007/978-3-540-73451-2_70
Doherty, P., Łukaszewicz, W., Skowron, A., Szałas, A.: Knowledge Representation Techniques, A Rough Set Approach. Studies in Fuziness and Soft Computing, vol. 202. Springer, Heidelberg (2006)
Dubois, D., Gottwald, S., Hájek, P., Kacprzyk, J., Prade, H.: Terminological difficulties in fuzzy set theory - the case of “Intuitionistic Fuzzy Sets". Fuzzy Sets Syst. 156(3), 485–491 (2005)
Dubois, D., Konieczny, S., Prade, H.: Quasi-possibilistic logic and its measures of information and conflict. Fundamenta Informaticae 57(2–4), 101–125 (2003)
Dubois, D., Lang, J., Prade, H.: Fuzzy sets in approximate reasoning, part 2: logical approaches. Fuzzy Sets Syst. 40(1), 203–244 (1991)
Dubois, D., Prade, H.: Fuzzy sets in approximate reasoning, part 1: inference with possibility distributions. Fuzzy Sets Syst. 40(1), 143–202 (1991)
Dunin-Kęplicz, B., Szałas, A.: Agents in approximate environments. In: Eijck, J., Verbrugge, R. (eds.) Games, Actions and Social Software. Multidisciplinary Aspects. LNCS, vol. 7010, pp. 141–163. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29326-9_8
Kruse, R., Schwecke, E., Heinsohn, J.: Uncertainty and Vagueness in Knowledge Based Systems. Numerical Methods. Springer, Heidelberg (1991)
Małuszyński, J., Szałas, A.: Partiality and inconsistency in agents’ belief bases. In: Barbucha et al., D. (ed.) Proceedings of KES-AMSTA. Frontiers of Artificial Intelligence and Applications, vol. 252, pp. 3–17. IOS Press (2011)
Pawlak, Z.: Rough Sets. Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Dordrecht (1991)
Pawlak, Z., Polkowski, L., Skowron, A.: Rough set theory. In: Wah, B. (ed.) Wiley Encyclopedia of Computer Science and Engineering. Wiley (2008)
Pimentel, S.G., Rodi, W.L.: Belief revision and paraconsistency in a logic programming framework. In: Nerode, A., Marek, W., Subrahmanian, V.S. (eds.) Logic Programming and Non-Monotonic Reasoning: Proceedings of the First International Workshop, pp. 228–242. MIT Press (1991)
Polkowski, L.: Approximate Reasoning by Parts - An Introduction to Rough Mereology. Intelligent Systems Reference Library, vol. 20. Springer, Heidelberg (2011)
Polkowski, L., Semeniuk-Polkowska, M.: Where rough sets and fuzzy sets meet. Fundam. Inform. 142(1–4), 269–284 (2015)
Prade, H.: A quantitative approach to approximate reasoning in rule-based expert systems. In: Bolc, L., Coombs, M. (eds.) Expert System Applications, pp. 199–256. Springer, Heidelberg (1988)
Skowron, A., Stepaniuk, J., Swiniarski, R.: Approximation spaces in rough-granular computing. Fundam. Inform. 100(1–4), 141–157 (2010)
Szałas, A.: Symbolic explanations of generalized fuzzy reasoning. In: Neves-Silva, R., Tshirintzis, G., Uskov, V., Howlett, R., Jain, L. (eds.) Smart Digital Futures 2014, pp. 7–16. IOS Press (2014)
Wang, H., Sunderraman, R.: A data model based on paraconsistent intuitionistic fuzzy relations. In: Hacid, M.-S., Murray, N.V., Raś, Z.W., Tsumoto, S. (eds.) ISMIS 2005. LNCS (LNAI), vol. 3488, pp. 669–677. Springer, Heidelberg (2005). doi:10.1007/11425274_69
Yao, Y., Lin, T.: Generalization of rough sets using modal logics. Intell. Autom. Soft Comput. 2(2), 103–119 (1996)
Yao, Y., Lin, T.: Graded rough set approximations based on nested neighborhood systems. In: Proceedings of the 5th European Congress on Intelligent Techniques and Soft Computing, vol. 1, pp. 196–200 (1997)
Yao, Y., Wong, S., Lin, T.: A review of rough set models. In: Lin, T.Y., Cercone, N. (eds.) Rough Sets and Data Mining, pp. 47–75. Springer, New York (1997)
Zadeh, L.: From computing with numbers to computing with words - from manipulation of measurements to manipulation of perceptions. Int. J. Appl. Math. Comput. Sci. 12(3), 307–324 (2002)
Zadeh, L.: Fuzzy sets. Inf. Control 8, 333–353 (1965)
Zadeh, L.: Computing with Words - Principal Concepts and Ideas. Studies in fuzziness and soft computing, vol. 277. Springer, Heidelberg (2012)
Acknowledgments
The last two authors have been supported by the Polish National Science Centre grant 2015/19/B/ST6/02589.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
De Angelis, F.L., Di Marzo Serugendo, G., Dunin-Kęplicz, B., Szałas, A. (2017). Heterogeneous Approximate Reasoning with Graded Truth Values. In: Polkowski, L., et al. Rough Sets. IJCRS 2017. Lecture Notes in Computer Science(), vol 10313. Springer, Cham. https://doi.org/10.1007/978-3-319-60837-2_6
Download citation
DOI: https://doi.org/10.1007/978-3-319-60837-2_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-60836-5
Online ISBN: 978-3-319-60837-2
eBook Packages: Computer ScienceComputer Science (R0)