Abstract
In this paper we present the modelling and control for a Wind Energy Conversion System (WECS) using Doubly-Fed Induction Generator (DFIG). Decoupling control between active and reactive powers allows easy adaptation to the new grid-codes. We will present PI controller and a conventional First Order Sliding Mode Controller (SMC) for Active and Reactive Power (PQ) control. The performances are compared in term of powers references tracking and robustness against parameters variations. Simulation work is carried out on the software MATLAB/Simulink.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
REN21.: Renewables 2016 Global Status Report. Renewable Energy Policy Network for 21st Century (2016)
The Global Wind Energy Outlook: GWEO (2012)
Alternative Energy. www.altenergy.org/renewables/wind. Accessed 2016
GWEC.: Global Wind 2015 Report. Accessed Apr 2016
Lather, J.S., Dhillon, S.S., Marwaha, S.: Modern control aspects in doubly fed induction generator based power systems: a review. IJAREEIE 2, 2149–2161 (2013)
Babouri, R., Aouzellag, D., Ghedamsi, K.: Integration of doubly fed induction generator entirely interfaced with network in a wind energy conversion system. Energy Procedia 36, 169–178 (2013). Science Direct
Poitiers, F., Bouaouiche, T., Machmoum, M.: Advanced control of doubly-fed induction generator for wind energy conversion. EPSR 79, 1085–1096 (2009). Elsevier
Han, J.: From PID to active disturbance rejection control. IEEE Trans. Ind. Electron. 56(3), 900–906 (2009)
Boukhriss, A., Nasser, T., Essadki, A.: A linear active disturbance rejection control applied for DFIG based wind energy conversion system. IJCSI 10(2), 391–399 (2013)
Taraft, S., Rékioua, D., Azoullag, D.: Commande en mode glissant de la MADA dans une éolienne à vitesse variable connectée au réseau. Revue des Energies Renouvelables SMEE’10 Bou Smaïl Tipaza (2010)
Hu, J., Shang, L., He, Y., Zhu, Z.: Direct active and reactive power regulation of grid-connected DC/AC converters using sliding mode control approach. IEEE Trans. Power Electron. 26(1), 210–222 (2010). IEEE
Benbouzid, M., Beltran, B., Amirat, Y., Yao, G., Han J., Mangel, H.: High-order sliding mode control for DFIG-based wind turbine fault ride-through. IEEE (2013)
Saravanakumar, R., Jena, D.: Validation of an integral sliding mode control for optimal control of three blade speed variable pitch wind turbine. Electr. Power Energ. Syst. 69, 421–429 (2015). Elsevier
Patnaik, R., Dash, P., Mahapatra, K.: Adaptive terminal sliding mode power control of DFIG based wind energy conversion system for stability enhancement. Int. Trans. Electr. Energ. Syst. 26, 750–782 (2016). Wiley Ltd.
Abdeddaim, S., Betka, A.: Optimal tracking and robust control of the DFIG wind turbine. Electr. Power Energ. Syst. 49, 234–242 (2013). Elsevier
Morshed, M.J., Fekih, A.: A fault-tolerant control paradigm for microgrid-connected wind energy systems. IEEE (2016)
Benkahla, M., Taleb, R., Boudjema, Z.: Comparative study of robust control strategies for a DFIG-based wind turbine. IJACSA 7(2), 455–462 (2016)
Ravichandran, S., Kumudinidevi, R., Bharathidasan, S., Jeba, V.E.: Coordinated controller design of grid connected DFIG based wind turbine using response surface methodology and NSGA II. Sustain. Energ. Technol. Assess. 8, 120–130 (2014). Elsevier
Arama, F., Mazari, B., Dahbi, A., Roummani, K., Hamouda, M.: Artificial intelligence control applied in wind energy system. IEEE (2014)
Pappachen, A., Fathima, P.: Genetic algorithm based PID controller for two-area deregulated power system along with DFIG unit. ARPN 10(9), 3991–3996 (2015)
Elgammal, A.A.A.: Optimal design of PID controller for doubly-fed induction generator-based wave energy conversion system using multi-objective particle swarm optimization. J. Technol. Innov. Renew. Energy 3, 17 (2014)
Hosseini, S., Bafghi, S.H.: Optimization of direct power control of doubly-fed induction machine (DFIM) using PSO algorithm. IJSEI 2, 2251–8843 (2013)
Hagh, M., Roozbehani, S., Najaty, F., Ghaemi, S., Tan, Y., Muttaqi, K.: Direct power control of DFIG based wind turbine based on wind speed estimation and particle swarm optimization. IEEE (2015)
Merabet, A., Ahmed, K.T., Ibrahim, H.: Implementation of sliding mode control system for generator and grid control of wind energy conversion system. IEEE (2016)
Belmokhtar, K., Doumbia, M.L., Agbossou, K.: Modélisation et commande d’un système éolien à base de machine asynchrone à double alimentation pour la fourniture de puissances au réseau électrique. In: JSR-CIGE 2010, 03–04, 2010
Chemidi, A., Meliani, S.M., Benhabib, M.C.: Etude d’une Ferme éolienne à base de MADA connectée au réseau électrique: Analyse et compensation des harmoniques. In: Proceedings of CIGE-2013, Bechar University (2013)
Grid code for renewable energies. WORKSHOP - EMI- Rabat, June 2015
Caron, J.-P., Hautier, J.-P.: Modélisation et Commande de la Machine Asynchrone, TECHNIP (1995)
Chaiba, A.: Commandes intelligentes de la génératrice asynchrone double alimentée, PAF (Presse Académique Francophones), pp. 32–35 (2012)
Martinez, M.I., Susperregui, A., Tapia, G., Xu, L.: Sliding-mode control of wind turbine-driven double-fed induction generator under non-ideal grid voltages. IET Renew. Power Gen. 7, 370–379 (2013)
Utkin, V.: Variable structure systems with sliding mode. IEEE TAC 22(2), 212–222 (1977)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Appendix
Appendix
DFIG parameters: S N = 3 MVA; R s = 0.012 Ω; R r = 0.021 Ω; L s = 0.0137 H; L r = 0.0136 H; M = 0.0135 H; p = 2; \( J = 0.07\,{\text{Kg}} . {\text{m}}^{2} \); f = 0.0024 N.m.s−1.
Turbine parameters c 1 = 0.5872, c 2 = 116, c 3 = 0.4, c 4 = 5, c 5 = 21, c 6 = 0.0085; P tN = 4 MW; R = 35.25 m. Gear – Boxratio: G = 90.
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this paper
Cite this paper
Taleb, M., Cherkaoui, M. (2018). Active and Reactive Power Robust Control of Doubly Fed Induction Generator Wind Turbine to Satisfy New Grid Codes. In: Abraham, A., Haqiq, A., Ella Hassanien, A., Snasel, V., Alimi, A. (eds) Proceedings of the Third International Afro-European Conference for Industrial Advancement — AECIA 2016. AECIA 2016. Advances in Intelligent Systems and Computing, vol 565. Springer, Cham. https://doi.org/10.1007/978-3-319-60834-1_12
Download citation
DOI: https://doi.org/10.1007/978-3-319-60834-1_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-60833-4
Online ISBN: 978-3-319-60834-1
eBook Packages: EngineeringEngineering (R0)