Nothing Special   »   [go: up one dir, main page]

Skip to main content

Active and Reactive Power Robust Control of Doubly Fed Induction Generator Wind Turbine to Satisfy New Grid Codes

  • Conference paper
  • First Online:
Proceedings of the Third International Afro-European Conference for Industrial Advancement — AECIA 2016 (AECIA 2016)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 565))

Included in the following conference series:

  • 800 Accesses

Abstract

In this paper we present the modelling and control for a Wind Energy Conversion System (WECS) using Doubly-Fed Induction Generator (DFIG). Decoupling control between active and reactive powers allows easy adaptation to the new grid-codes. We will present PI controller and a conventional First Order Sliding Mode Controller (SMC) for Active and Reactive Power (PQ) control. The performances are compared in term of powers references tracking and robustness against parameters variations. Simulation work is carried out on the software MATLAB/Simulink.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. REN21.: Renewables 2016 Global Status Report. Renewable Energy Policy Network for 21st Century (2016)

    Google Scholar 

  2. The Global Wind Energy Outlook: GWEO (2012)

    Google Scholar 

  3. Alternative Energy. www.altenergy.org/renewables/wind. Accessed 2016

  4. GWEC.: Global Wind 2015 Report. Accessed Apr 2016

    Google Scholar 

  5. Lather, J.S., Dhillon, S.S., Marwaha, S.: Modern control aspects in doubly fed induction generator based power systems: a review. IJAREEIE 2, 2149–2161 (2013)

    Google Scholar 

  6. Babouri, R., Aouzellag, D., Ghedamsi, K.: Integration of doubly fed induction generator entirely interfaced with network in a wind energy conversion system. Energy Procedia 36, 169–178 (2013). Science Direct

    Article  Google Scholar 

  7. Poitiers, F., Bouaouiche, T., Machmoum, M.: Advanced control of doubly-fed induction generator for wind energy conversion. EPSR 79, 1085–1096 (2009). Elsevier

    Google Scholar 

  8. Han, J.: From PID to active disturbance rejection control. IEEE Trans. Ind. Electron. 56(3), 900–906 (2009)

    Article  Google Scholar 

  9. Boukhriss, A., Nasser, T., Essadki, A.: A linear active disturbance rejection control applied for DFIG based wind energy conversion system. IJCSI 10(2), 391–399 (2013)

    Google Scholar 

  10. Taraft, S., Rékioua, D., Azoullag, D.: Commande en mode glissant de la MADA dans une éolienne à vitesse variable connectée au réseau. Revue des Energies Renouvelables SMEE’10 Bou Smaïl Tipaza (2010)

    Google Scholar 

  11. Hu, J., Shang, L., He, Y., Zhu, Z.: Direct active and reactive power regulation of grid-connected DC/AC converters using sliding mode control approach. IEEE Trans. Power Electron. 26(1), 210–222 (2010). IEEE

    Article  Google Scholar 

  12. Benbouzid, M., Beltran, B., Amirat, Y., Yao, G., Han J., Mangel, H.: High-order sliding mode control for DFIG-based wind turbine fault ride-through. IEEE (2013)

    Google Scholar 

  13. Saravanakumar, R., Jena, D.: Validation of an integral sliding mode control for optimal control of three blade speed variable pitch wind turbine. Electr. Power Energ. Syst. 69, 421–429 (2015). Elsevier

    Article  Google Scholar 

  14. Patnaik, R., Dash, P., Mahapatra, K.: Adaptive terminal sliding mode power control of DFIG based wind energy conversion system for stability enhancement. Int. Trans. Electr. Energ. Syst. 26, 750–782 (2016). Wiley Ltd.

    Article  Google Scholar 

  15. Abdeddaim, S., Betka, A.: Optimal tracking and robust control of the DFIG wind turbine. Electr. Power Energ. Syst. 49, 234–242 (2013). Elsevier

    Article  Google Scholar 

  16. Morshed, M.J., Fekih, A.: A fault-tolerant control paradigm for microgrid-connected wind energy systems. IEEE (2016)

    Google Scholar 

  17. Benkahla, M., Taleb, R., Boudjema, Z.: Comparative study of robust control strategies for a DFIG-based wind turbine. IJACSA 7(2), 455–462 (2016)

    Article  Google Scholar 

  18. Ravichandran, S., Kumudinidevi, R., Bharathidasan, S., Jeba, V.E.: Coordinated controller design of grid connected DFIG based wind turbine using response surface methodology and NSGA II. Sustain. Energ. Technol. Assess. 8, 120–130 (2014). Elsevier

    Article  Google Scholar 

  19. Arama, F., Mazari, B., Dahbi, A., Roummani, K., Hamouda, M.: Artificial intelligence control applied in wind energy system. IEEE (2014)

    Google Scholar 

  20. Pappachen, A., Fathima, P.: Genetic algorithm based PID controller for two-area deregulated power system along with DFIG unit. ARPN 10(9), 3991–3996 (2015)

    Google Scholar 

  21. Elgammal, A.A.A.: Optimal design of PID controller for doubly-fed induction generator-based wave energy conversion system using multi-objective particle swarm optimization. J. Technol. Innov. Renew. Energy 3, 17 (2014)

    Article  Google Scholar 

  22. Hosseini, S., Bafghi, S.H.: Optimization of direct power control of doubly-fed induction machine (DFIM) using PSO algorithm. IJSEI 2, 2251–8843 (2013)

    Google Scholar 

  23. Hagh, M., Roozbehani, S., Najaty, F., Ghaemi, S., Tan, Y., Muttaqi, K.: Direct power control of DFIG based wind turbine based on wind speed estimation and particle swarm optimization. IEEE (2015)

    Google Scholar 

  24. Merabet, A., Ahmed, K.T., Ibrahim, H.: Implementation of sliding mode control system for generator and grid control of wind energy conversion system. IEEE (2016)

    Google Scholar 

  25. Belmokhtar, K., Doumbia, M.L., Agbossou, K.: Modélisation et commande d’un système éolien à base de machine asynchrone à double alimentation pour la fourniture de puissances au réseau électrique. In: JSR-CIGE 2010, 03–04, 2010

    Google Scholar 

  26. Chemidi, A., Meliani, S.M., Benhabib, M.C.: Etude d’une Ferme éolienne à base de MADA connectée au réseau électrique: Analyse et compensation des harmoniques. In: Proceedings of CIGE-2013, Bechar University (2013)

    Google Scholar 

  27. Grid code for renewable energies. WORKSHOP - EMI- Rabat, June 2015

    Google Scholar 

  28. Caron, J.-P., Hautier, J.-P.: Modélisation et Commande de la Machine Asynchrone, TECHNIP (1995)

    Google Scholar 

  29. Chaiba, A.: Commandes intelligentes de la génératrice asynchrone double alimentée, PAF (Presse Académique Francophones), pp. 32–35 (2012)

    Google Scholar 

  30. Martinez, M.I., Susperregui, A., Tapia, G., Xu, L.: Sliding-mode control of wind turbine-driven double-fed induction generator under non-ideal grid voltages. IET Renew. Power Gen. 7, 370–379 (2013)

    Article  Google Scholar 

  31. Utkin, V.: Variable structure systems with sliding mode. IEEE TAC 22(2), 212–222 (1977)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mbarek Taleb .

Editor information

Editors and Affiliations

Appendix

Appendix

DFIG parameters: S N  = 3 MVA; R s  = 0.012 Ω; R r  = 0.021 Ω; L s  = 0.0137 H; L r  = 0.0136 H; M = 0.0135 H; p = 2; \( J = 0.07\,{\text{Kg}} . {\text{m}}^{2} \); f = 0.0024 N.m.s−1.

Turbine parameters c 1 = 0.5872, c 2 = 116, c 3 = 0.4, c 4 = 5, c 5 = 21, c 6 = 0.0085; P tN  = 4 MW; R = 35.25 m. Gear – Boxratio: G = 90.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Taleb, M., Cherkaoui, M. (2018). Active and Reactive Power Robust Control of Doubly Fed Induction Generator Wind Turbine to Satisfy New Grid Codes. In: Abraham, A., Haqiq, A., Ella Hassanien, A., Snasel, V., Alimi, A. (eds) Proceedings of the Third International Afro-European Conference for Industrial Advancement — AECIA 2016. AECIA 2016. Advances in Intelligent Systems and Computing, vol 565. Springer, Cham. https://doi.org/10.1007/978-3-319-60834-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60834-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60833-4

  • Online ISBN: 978-3-319-60834-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics