Nothing Special   »   [go: up one dir, main page]

Skip to main content

Multi-Enzyme Pathway Optimisation Through Star-Shaped Reachable Sets

  • Conference paper
  • First Online:
11th International Conference on Practical Applications of Computational Biology & Bioinformatics (PACBB 2017)

Abstract

This article studies the time evolution of multi-enzyme pathways. The non-linearity of the problem coupled with the infinite dimensionality of the time-dependent input usually results in a rather laborious optimization. Here we discuss how the optimization of the input enzyme concentrations might be efficiently reduced to a calculation of reachable sets. Under some general conditions, the original system has star-shaped reachable sets that can be derived by solving a partial differential equation. This method allows a thorough study and optimization of quite sophisticated enzymatic pathways with non-linear dynamics and possible inhibition. Moreover, optimal control synthesis based on reachable sets can be implemented and was tested on several simulated examples.

This research was supported by the National Sustainability Programme of the Czech Ministry of Education, Youth and Sports (LO1214) and the RECETOX research infrastructure (LM2011028).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Carbonell, P., Parutto, P., Herisson, J., Pandit, S.B., Faulon, J.L.: XTMS: pathway design in an eXTended metabolic space. Nucleic Acids Res. 42(W1), W389–W394 (2014)

    Article  Google Scholar 

  2. Klipp, E., Heinrich, R., Holzhütter, H.G.: Prediction of temporal gene expression. Eur. J. Biochem. 269(22), 5406–5413 (2002)

    Article  Google Scholar 

  3. Mazurenko, S.: Partial differential equation for evolution of star-shaped reachability domains of differential inclusions. Set-Valued Variational Anal. 24(2), 333–354 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Filippov, A.: On certain questions in the theory of optimal control. J. Soc. Ind. Appl. Math. Ser. A Control 1(1), 76–84 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  5. Aubin, J.P., Cellina, A.: Differential Inclusions: Set-Valued Maps and Viability Theory, vol. 264. Springer, Heidelberg (1984)

    MATH  Google Scholar 

  6. Bayon, L., Otero, J.A., Ruiz, M.M., Suárez, P.M., Tasis, C.: Sensitivity analysis of a linear and unbranched chemical process with n steps. J. Math. Chem. 53(3), 925–940 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dvorak, P., Kurumbang, N.P., Bendl, J., Brezovsky, J., Prokop, Z., Damborsky, J.: Maximizing the efficiency of multienzyme process by stoichiometry optimization. ChemBioChem 15(13), 1891–1895 (2014)

    Article  Google Scholar 

  8. Llorens, M., Nuño, J.C., Rodríguez, Y., Meléndez-Hevia, E., Montero, F.: Generalization of the theory of transition times in metabolic pathways: a geometrical approach. Biophys. J. 77(1), 23–36 (1999)

    Article  Google Scholar 

  9. Bartl, M., Li, P., Schuster, S.: Modelling the optimal timing in metabolic pathway activation – use of Pontryagin’s Maximum Principle and role of the Golden section. Biosystems 101(1), 67–77 (2010)

    Article  Google Scholar 

  10. Oyarzun, D.A., Ingalls, B.P., Middleton, R.H., Kalamatianos, D.: Sequential activation of metabolic pathways: a dynamic optimization approach. Bull. Math. Biol. 71(8), 1851–1872 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hijas-Liste, G.M., Klipp, E., Balsa-Canto, E., Banga, J.R.: Global dynamic optimization approach to predict activation in metabolic pathways. BMC Syst. Biol. 8(1), 1 (2014)

    Article  Google Scholar 

  12. Kurzhanski, A.B., Varaiya, P.: Dynamics and Control of Trajectory Tubes. Theory and Computation. Birkhauser, Basel, (2014)

    Book  MATH  Google Scholar 

  13. Mitchell, I.M., Bayen, A.M., Tomlin, C.J.: A time-dependent Hamilton-Jacobi formulation of reachable sets for continuous dynamic games. IEEE Trans. Autom. Control 50(7), 947–957 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Panasyuk, A.I., Panasyuk, V.I.: An equation generated by a differential inclusion. Math. Notes Acad. Sci. USSR 27(3), 213–218 (1980)

    MathSciNet  MATH  Google Scholar 

  15. Althoff, M., Stursberg, O., Buss, M.: Computing reachable sets of hybrid systems using a combination of zonotopes and polytopes. Nonlinear Anal. Hybrid Syst. 4(2), 233–249 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mazurenko, S.S.: Viscosity Solutions to Evolution of Star-Shaped Reachable Sets (2016). Submitted and is currently under review

    Google Scholar 

  17. Kurzhanski, A.B., Filippova, T.F.: On the theory of trajectory tubes - a mathematical formalism for uncertain dynamics, viability and control. In: Advances in Nonlinear Dynamics and Control, pp. 122–188. Birkhauser, Boston (1993)

    Google Scholar 

  18. Crandall, M.G., Lions, P.L.: Two approximations of solutions of Hamilton-Jacobi equations. Math. Comput. 43(167), 1–19 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  19. Souganidis, P.E.: Approximation schemes for viscosity solutions of Hamilton-Jacobi equations. J. Differ. Eqn. 59(1), 1–43 (1985)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanislav Mazurenko .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 169 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Mazurenko, S., Damborsky, J., Prokop, Z. (2017). Multi-Enzyme Pathway Optimisation Through Star-Shaped Reachable Sets. In: Fdez-Riverola, F., Mohamad, M., Rocha, M., De Paz, J., Pinto, T. (eds) 11th International Conference on Practical Applications of Computational Biology & Bioinformatics. PACBB 2017. Advances in Intelligent Systems and Computing, vol 616. Springer, Cham. https://doi.org/10.1007/978-3-319-60816-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60816-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60815-0

  • Online ISBN: 978-3-319-60816-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics